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“What is the most important thing a scientist should cultivate
in himself? One should get rid of excessive ambition. One
should not think that only a genius can be happy. One must
learn to appreciate even a small achievement, to rejoice in it,
and never overestimate oneself. One has to cultivate a love for
work. One has to understand and cultivate the joy of learning,
which is almost the same as the joy of life. Happiness is when
your life’s work is needed.”

Sobolev, Sergei Lvovich
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Foreword and acknowledgments

Its use is not just that History may give everyone his due
and that others may look forward to similar praise, but
also that the art of discovery be promoted and its methods
known through illustrious examples.1

Gottfried Wilhelm Leibniz,
Historia et origo calculi differentialis.

1. Mathematicians of the past, in general, experienced similar worries as we
do. How to choose a research problem? Where to find a job? How to deal with
administrative responsibilities? What to do in times of political instability,
epidemics, famine, and war?

We take the reader through a book of answers to these questions, given by
the mathematicians of the past — we learn what they did in a given situation,
and how it turned out. Their biographies set a broader perspective; they allow
us to see how the same aspirations play out differently in various historical
periods.

This is the first way to read our book: the biographical notes, which make
up half of the book, convey the life experiences of our colleagues from the past.

2. The reformist tsar Peter the Great wished to organize the education system
in Russia in a European manner. Influenced (among others) by Leibniz,
he created the Academy of Sciences and Arts in St. Petersburg. Peter the
Great commissioned Blumentrost, his physician-in-ordinary (!), to find future
collaborators in Europe.

Peter the Great passed away, but the Academy opened in 1725 under
Empress Catherine I. To build science from scratch came several relatively
young people, averaging about 30, including nineteen-year-old Euler, Russia’s
greatest mathematical fortune. Leonhard Euler found interesting mathematics
in everything, be it cartography, blood circulation, or the study of the stability
of ships. Among the early academicians were Christian Goldbach — who
sparked Euler’s interest in number theory and later worked as a cryptographer
— and Daniel Bernoulli, who wrote in St. Petersburg his textbook on fluid

1 This quote is translated from Latin by André Weil, in History of Mathematics: Why
and How. Proceedings of ICM1978.
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dynamics, one of the great achievements of eighteenth-century science, and
popularized the Petersburg paradox.

Mathematical education in Russia received a strong impetus: schools and
universities were established, textbooks were translated over the following
decades. Euler’s works were published for another 20 years after his death.

3. The next significant stage was marked by the mathematicians Bunyakovsky,
Ostrogradsky, and Lamé. All of them were educated in Europe and made
notable contributions to education in Russia. Like Euler, they did not shy
away from any work: in addition to mathematics, Bunyakovsky worked in
demography (for example, he used statistics to determine the size of the
Russian army), Lamé calculated stresses for the domes and arches of St. Isaac’s
Cathedral, Ostrogradsky developed statistical methods for dealing with rejects
in production and studied the theoretical issues of ballistics.

4. The next stroke of luck was Chebyshev, not much inferior to Euler in the
breadth of his interests. Chebyshev frequently traveled to Western Europe to
discuss mathematics, and then raised a whole galaxy of students so that there
was someone to talk to in Russia.

The older the school, the more valuable it is. For a school is a totality
of centuries of accumulated creative techniques, traditions, and oral
histories about scientists who have gone or are now living, their way
of working, and their views on the subject of research. These oral
traditions, which accumulate over the centuries and cannot be printed
or communicated to those considered to be unsuitable — these oral
traditions are a treasure whose effectiveness is difficult even to imagine
and evaluate... Looking for any parallels or comparisons, the age of
a school, its accumulation of traditions and legends, is nothing other
than the energy of the school, in an implicit form.

Academician N.N. Luzin

5. Then came the First World War, a time of upheaval. Near the end of the
war, there came two revolutions. During a famine in St. Petersburg (then called
Petrograd), the Sochocki family died of hunger and cold; Steklov and Krylov
miraculously survived, while younger Vinogradov, Friedmann, and Besicovitch
had moved to university in Perm, which kept changing hands during the civil
war — but at least they were fed there!

Besicovitch and Tamarkin emigrated, fearing the new authorities, and
the Steklov Institute, headed by Vinogradov, moved to Moscow. Many
mathematicians died or left (some abroad, some to Moscow), but mathematical
life in St. Petersburg (now Leningrad) did not stop: students matured —
Linnik, Kantorovich, Alexandrov, Sobolev, Fock, Faddeev... and then the
Second World War began.
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After the war, Leningrad served as a place for people with “wrong” biogra-
phies (such as Rokhlin and Ladyzhenskaya), who had no place in Moscow.
And once again, a large constellation of mathematicians emerged who have
left their mark on world science.

6. In this book we write about mathematicians who lived or worked in
St. Petersburg, including, for example, Georg Cantor, who was born in the city.
An interesting coincidence: Cantor was baptized in the same Lutheran church
where Euler was married. Chebyshev lived in the same house on Vasilevskiy
Island where Cantor’s childhood passed. Not far away, one finds Kovalevskaya’s
house. Behind the official biographies of scientists sometimes one does not see
living personalities, while we, on the contrary, have tried to include in the texts
as many personal stories as possible.

The past not merely is not fugitive, it remains present. It is not within
a few months only after the outbreak of a war that laws passed without
haste can effectively influence its course, it is not within fifteen years
only after a crime which has remained obscure that a magistrate can
still find the vital evidence which will throw a light on it...

Marcel Proust, In Search of Lost Time

7. Finally, the history of mathematics can also be looked at as a legacy
composed of ideas. Mathematicians have long drawn inspiration from the
classical works of their predecessors. Bunyakovsky engaged Chebyshev in the
publication of Euler’s works. In the process of editing, Chebyshev became
interested in number theory and proved his famous estimates on the density
of the distribution of prime numbers.

Besides biographical articles, the book includes mathematical notes —
on Monge–Kantorovich’s transportation problem, on the Vinogradov circle
method, on Fedorov’s crystallography, on Chebyshev’s results in problems of
cartography, and so on, 36 notes in all. Our authors have tried to show classical
results in a new light whenever possible and appropriate. We hope that readers
can gain inspiration and new insights from leafing through this book.

Nikita Kalinin

* * *

Is there something special and unique about St. Petersburg mathematicians
and their mathematics? We certainly think so. Despite being a relatively
young city, St. Petersburg, just over 300 years old, has established a prominent
place for itself in the world of mathematics. It was therefore fitting that St.
Petersburg was selected to host the ICM 2022, where we planned a grand
celebration of mathematics, welcoming mathematicians from all around the
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globe. We wanted to give everyone a taste of local mathematical traditions,
so we decided to prepare a short, coffee-table book to present some mathe-
matical discoveries and personal anecdotes from around twenty St. Petersburg
mathematicians. The goal was to make the content informative yet accessible,
even for those who aren’t particularly interested in the history or study of
mathematics, showcasing the beauty of mathematical ideas and portraying
their authors as relatable humans, rather than as cold-hearted calculators.

However, as often happens, life had other plans. The book was never
published in its intended form, as the congress was moved online by the IMU
EC. As we worked on what was initially meant to be a brief and light-hearted
book, it began to evolve into something more comprehensive and profound,
in a very different genre. While this new direction may appeal to a smaller
audience, in our view it has become more interesting and informative. We still
hope that this new format will attract many readers, not just mathematicians
interested in their field’s development, but even those well-versed in history
who might find something new and worthwhile.

Should we be interested in the history of mathematical discoveries and the
stories of the people behind them? We believe so, as these stories are not only
engaging but can also teach us valuable lessons for our lives and studies today.
Perhaps it’s fitting that a new book in a new form emerged, especially as it
coincides with the celebration of 300 years of science in St. Petersburg in 2024.

Stanislav Smirnov
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First years of mathematics
in the Saint Petersburg
Academy of Sciences





Christian Goldbach (1690––1764)

Christian Goldbach was a man of many talents: throughout his life he
practiced law, music theory, he worked on deciphering letters of foreign
diplomats while serving in the postal censorship offices and rose to the rank of
Privy Councillor1 under Empress Elizabeth. He studied the Riccati equation,
series summation and convergence; he extensively corresponded with Euler,
stimulating the latter’s interest in number theory.

A descendant of an ancient Prussian family, he was born on 18 March 1690
in Königsberg (now Kaliningrad), the son of Pastor Bartholomeus Goldbach,
a professor of history and rhetoric at the local university. While studying law
at the University of Königsberg, Christian Goldbach spent much time learning
mathematics, as the pages of his diary attest.

Upon completion of studies, the young man set off on a journey while
looking for a way to fulfill his secret desire. He wrote to Teuerlain:2

I had always dreamed of putting my energies into algebra and having
an experienced teacher, who would introduce me to sources and
stimulate me with new problems to move forward.

During long visits to European universities (1710––1714), he collected an-
tiquities and books and visited libraries. Among those he met were Christian
Wolff,3 Gottfried Leibniz, Isaac Newton, the Bernoulli family, and Abraham de
Moivre. Goldbach engaged in correspondence with some of them, discussing
mathematical problems. Everywhere he was received with a warm welcome,
probably due to his varied interests and his gift as a brilliant conversationalist.

He had a rare ability to instantly make acquaintances and then maintain
connections via correspondence with people of all kinds. He defended his law
thesis On the Punishment of Kidnapping in Groningen while staying there for
two weeks.

When the Prussian king granted him the rank of hofrat (court counselor),
Goldbach spent three years in Königsberg, corresponding with friends, before
setting off again, this time traveling north, first to Sweden, performing unoffi-
cial diplomatic work along the way, then on to Denmark, Austria, and Venice.

1 A position roughly equivalent to vice-admiral or deputy minister.
2 Teuerlein, David Andreas (1645––1728). A theologian and amateur mathematician.
3 Christian von Wolff, (1679––1754). A German encyclopedist, actively involved in the

search for candidates to form the Academy of Sciences in St. Petersburg.
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From 1724, Goldbach’s correspondence with the Nuremberg physicist Jo-
hann Gabriel Doppelmayr mentions the Academy being established in St. Pe-
tersburg and Johann Daniel Schumacher selecting candidates for it from among
European scientists on behalf of the Russian tsar. Invitations to St. Petersburg
had already been received by his friends (Jacob Hermann and Georg Bernhard
Bilfinger, Daniel and Nicolaus Bernoulli), and Goldbach decided to travel there
even without being invited. On his way from Riga, he wrote to Blumentrost,4
with whom he was closely acquainted, and was not deterred by Blumenrost’s
reply that all positions at the Academy had been already taken. In August
1725, he was in St. Petersburg, ahead of Hermann and Bilfinger.

Goldbach’s encyclopedic knowledge and conversational skills had been ap-
preciated by the academic administration, and a position as Academy secretary
and historiographer was quickly found for him. Goldbach also had time
for mathematics since his secretarial duties, which included writing minutes
of meetings, preparing academic work for publication, and keeping up with
correspondence, hardly weighed heavily on him. True, his minutes were rather
concise, but he was occasionally allowed to present his mathematical findings
at the Academy Conference.5 He also took part in the selection of candidates
for positions at the Academy and established contacts with other international
Academies.

At the same time, he was appointed Peter II’s tutor in St. Petersburg
at the request of Empress Catherine I. Goldbach even followed the Tsar’s
court to Moscow in January 1728 and lived there until 1732. While in
Moscow, he took care of the academic affairs of the Academy in St. Petersburg,
he wrote a preface to Volume I of Commentaries of the Imperial Saint
Petersburg Academy of Sciences, an obituary to Nicolaus Bernoulli, and several
mathematical papers.

Goldbach returned to St. Petersburg together with Anna Ioannovna’s court6
in January 1732, where he was appointed chairman of the Conference of the
Academy of Sciences. He was in charge of all scientific affairs of the Academy
for the next 18 months, before returning to his previous duties when a new
president of the Academy was appointed.

In March 1742, early in Elizaveta Petrovna’s7 reign, Goldbach accepted an
offer to join the Collegium of Foreign Affairs (located in Moscow). It is not
entirely clear, however, what, as State Councillor (1742) and Privy Councillor
(1760), Christian Goldbach was doing for 22 years as a diplomat.

4 Blumentrost, Laurentius, (1692––1755). Lieutenant-medic of Peter the Great, first
president of the Academy of Sciences.

5 The centerpiece of the Academy’s scientific activity was its Conference, which met twice
a week. The earliest minutes of the scientific meeting of the Conference date from 2 November
1725. That day the academician Jacob Hermann gave a report on the shape of the Earth.

6 Anna Ioannovna (1693––1740) was the Empress of Russia from 1730 to 1740.
7 Elizabeth of Russia, or Elizaveta Petrovna (1709––1762). Empress of Russia in

1741––1762.
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At first, Goldbach often came to St. Petersburg on business, visited the
Academy of Sciences during celebrations and public assemblies, delivered
speeches and poems, and shone at high society receptions and at court. He did
not return to St. Petersburg during the last ten years of his life (1754––1764).
He corresponded regularly with Euler, often discussing mathematical prob-
lems. When Count Alexey Petrovich Bestuzhev-Ryumin joined the Collegium
and established a service of censorship and perlustration of the encrypted
correspondence of foreign diplomats, Christian Goldbach became the head of
its deciphering service. Goldbach’s successful decryption of ciphers and his
development of new ones for secret correspondence were of enormous political
importance to Russia.

Goldbach’s finest hour came in 1744 when he decrypted a ciphered dispatch
sent to Paris by the French ambassador, the Marquis de La Chétardie.8 This
became a textbook case in the history of cryptography [3]. Chétardie knew his
letters were being opened but was convinced of the impossibility of decrypting
his cipher. So he wrote light-heartedly about the Empress, saying she was
wholly given over to pleasure, was frivolous, stupid, and vain. Bestuzhev-
Ryumin,9 who had become Chancellor by then, cleverly used this text in
his fight against the “French” court party: by that time, he already had
the deciphered texts of practically all the letters from the ambassador in his
possession. He acted out the scene of deciphering the dispatch in front of
Elizabeth “forcedly” uttering “reviling words.”

On 6 June 1744, Chétardie was expelled from the country. On 26 July,
Goldbach became an Active State Councillor.

An analysis of Christian Goldbach’s scientific legacy, his correspondence
with Nicolaus and Daniel Bernoulli, Leonhard Euler, Gottfried Leibniz, and
Jacob Hermann, and an analysis of his works is available in [1]. By the time
Goldbach arrived in St. Petersburg, several of his articles on arithmetic and
algebra had been published in the German periodical Acta Eruditorum. During
the Russian period of his life, six scientific articles were published in the first
four volumes (1728––1733) of the newly established Commentarii Academiae
Scientiarum Imperiali. These are papers on number theory, the integration
of differential equations, and infinite series; in addition, a large number of
Goldbach’s results appear in his correspondence. In 1721, in correspondence
with Nicolaus (II) Bernoulli, Goldbach presented some cases of the integrability
of the Riccati equation

y′ = cy2 + bxpy+ axm.

8 Jacques-Joachim Trotti, Marquis de La Chétardie, (1705––1759). French diplomat,
French envoy to Russia in 1739––1742 and 1743––1744, helped Elizabeth, daughter of Peter I,
arrange a coup d’état in 1741 and ascend the throne.

9 Bestuzhev-Ryumin, Alexey Petrovich (1693––1766), a Russian statesman. At different
times, he was an ambassador and chancellor, took part in many intrigues, and was twice
sentenced to death. An advocate of Russia’s rapprochement with England and Austria.
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In 1729––30, in letters to Daniel Bernoulli, Goldbach gave the first example
of a transcendental number,10 and asked the question about the integrability
in finite form of the differential binomial∫

xm(a+ bxn)pdx, m, n, p ∈ Q.

After receiving Goldbach’s letter, Bernoulli and Euler, living in the same
apartment, even made a bet for one ducat (a 6––7 gramm gold coin) that
Bernulli could not take this integral for m = 0, p = −1/n in 15 days, but
Bernoulli found it immediately. In 1730, Goldbach found all the cases m, n, p
when this integral can be expressed in algebraic form.

Goldbach’s correspondence with Leonhard Euler lasted for 35 years, and we
owe the formulation of the famous Goldbach’s problems (1742) to it: “Every
odd integer greater than five can be represented as a sum of three prime
numbers” (the ternary problem) and “Every even integer greater than two
can be represented as the sum of two prime numbers” (the binary problem).
For all sufficiently large odd numbers, the ternary problem was solved by
Ivan Vinogradov (1937) and Yuri Linnik (1945), and completely by Harald
Helfgott (2013), a mathematician of Peruvian origin. The Goldbach–Euler
binary problem is still open.

Part of Goldbach’s correspondence with Daniel and Nicolaus (II) Bernoulli
(71 and 27 letters, respectively) and Euler (177 letters) was edited and
published by Euler’s great-grandson Paul Fuss in 1843 [4].

Christian Goldbach died on 20 November 1764. He was buried in the
Lutheran section of the Sampsoniyevskoye cemetery in St. Petersburg.

Natalia Lokot
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The Chétardie cipher that
Christian Goldbach cracked

From 1742, Goldbach worked in the “black office” (Cabinet Noir), where
he deciphered letters of foreign ambassadors. This note discusses Goldbach’s
decipherment of the letter by the French ambassador, the Marquis de La
Chétardie, of February 15, 1744. It was shown to Empress Elizabeth and
led to the ambassador’s expulsion. The structure of the cipher is described,
and considerations are given as to how easy it is to crack.

Having arrived in Russia for the second time in 1743, the Marquis de La
Chétardie counted on Empress Elizabeth’s kind attitude towards him. He
knew that his letters were intercepted by the Russians, but he was absolutely
sure that his cipher could not be cracked, so he wrote openly everything he
thought.

For example, in his letter of 15 February 1744, which we are going to discuss,
he wrote:

...The Empress, by virtue of her laziness, laid everything on
Bestuzhev...

Chétardie was using the so-called Great Cipher (Grand Chiffre), developed
by Antoine Rossignol for the French court during the reign of Louis XIV, in
the second half of the XVII century. This cipher uses three-digit numbers
to encode words, letters, sounds, and syllables, with several numbers used
interchangeably for the same frequently occurring syllables. Some numbers
are meaningless and are added to make it harder to break the cipher.1

The text on the illustration on page 18:

[600] roubles à celle chez qui il logeait, qu’il vous avait marqué pouvoir
être important de faire, mais, dans les cas où il est essentiel d’être
informé de ce qui se passe dans l’intérieur de la Tsarine, et plus encore
de s’aider sûrement de ses préjugés superstitieux en intéressant pour
soi son confesseur et les prélats qui composent son synode, ce ne peut
jamais être que la nature de la circonstance qui peut décider du plus
ou du moins de dépense. Je suis même persuadé que vous estimerez
qu’on ne doit pas...

1 Note that it took the famous cryptanalyst Etienne Bazery, at the end of the XIXth
century, several years to crack a similar cipher from the time of Louis XIV in an attempt to
identify the man called “The Iron Mask.”
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It concerns Chétardie bribing someone who lives with Mikhail Golitsyn. To
know more about what is going on in the Tsarina’s entourage, it is necessary to
bribe her clergyman and the [Most Holy] Synod to be able to take advantage of
her superstitious nature. How much money will be needed cannot be predicted
in advance [in modern terms, Chétardie asks for funding].
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In 1742, Brevern tempted Christian Goldbach over from the Academy of
Sciences to serve in the Collegium of Foreign Affairs, with a salary of 1500
rubles a year (approximately two or three professorship salaries nowadays).
Bestuzhev–Ryumin later involved Goldbach in deciphering foreign correspon-
dence. Goldbach did not crack the Chétardie cipher instantly, but by 1744,
he had had two years’ experience of cracking ciphers, and while the first few
ciphers took him the whole first year to crack, this one he cracked within a
fortnight.

The Russian Ministry of Foreign Affairs archive, where Goldbach’s hand-
written transcripts are kept, is closed to external visitors. However, it appears
this was not always the case since Tatiana Soboleva, the author of the History
of Cryptography in Russia (2002), quotes these transcripts abundantly.

Hence, I had to look into French archives.2 Indeed, the letters from
Chétardie are preserved in the Archives du ministère des Affaires Étrangeres,
2 rue Suzanne Masson, 93120 La Courneuve, France. On the previous page is
a reproduction of such a letter.

The beginning of the letter, dated 15 February, looks like this:

335 632 679 498 283 249 202 97 996
752 786 983 95 155 900 591 179 23
478 987 742 597 36 659 933 894 126
527 97 99 813 865 780 898 958 432
507 302 514 694 611 510 661 56 414
506 406 359 95 358 712 562 715 900
219 51 498 111 823 880 466

Since I had in possession several decrypted letters, I deduced the meaning
of most of the numbers. In this excerpt, the first numbers 335 632 679 mean
nothing and are added to complicate the task for an unwanted reader.

It is not easy to solve this cipher, even with a deciphered version in front of
you. I thought at first that the words in one line corresponded to the numbers
in the line below and tried to find matches. The assumption turned out to be
wrong. The person who deciphered the letters wrote on top of the lines of the
cipher, filling in the lines to the end, and the corresponding numbers might
go a couple of lines below. Sometimes, the decipherment is done by meaning
rather than verbatim; sometimes, you cannot make out what is meant (perhaps
Chétardie confused a digit or two).

The matter progressed when, after several hours of studying the text, it
struck me that the number 51 probably corresponds to the word Tsarine. After
that, things went much faster— it became possible to match the numbers right
after and before 51 with the corresponding text.

Note the old spelling — logeoit instead of the modern logeait, seurement
instead of sûrement. Sometimes, Chétardie encoded a word exactly how it was

2 I am grateful to Jean-Fred Warlin for photographing the letters for me.
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spelled, sometimes as it was pronounced, and sometimes, he used abbreviations
when the word was clear from the context.

For example, deux = 136 (d’) 755 (eu), faits = 216 (fait) 816 (s), ulcéré=
339 (u) 574 (l’) 438 (cé) 283 (ré).

Let us read the letter of 15 February further. We will write one word per
line (with an approximate translation):

498 (En) 283 (re) 249 (marq) 202 (ant) let us note
97 (que) that
996 (tout) everything
752 (est) is
786 (junk)
983 (dans) in
95 (la) 155 (même) the same
900 (si) 591 (tu) 179 (ation) situation/position
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
359 (par) 95 (la) 358 (m) 712 (ort) 562 (de) 715 (Brevern)
Par la mort de Brevern— after the death of Brevern.3

So, how could Goldbach crack such a cipher? Let him speak for himself
(from a letter from Goldbach to Bestuzhev–Ryumin):

My dear Sir!
Having brought to Your Excellency the first fruits of the third key, I
hope that, instead of reproaching me for any slowness in this, there
will be more reason to wonder at my haste, should one ever please to
compare the key itself with the letters unscrambled and when it would
be clear that it was required to examine every number or every figure
very diligently, so it would be possible to learn the content of just
one letter. But since all this work has already been done, I am in a
position to give one piece a day, provided that I am not prevented from
doing so by other things. As for the fourth and fifth keys, of which I
also have several items [letters] in my hands, I find the aforesaid keys
incomparably more difficult than the first ones...

Once at least a few numbers are correctly solved (or the indicative content
of the letter is known), further deciphering becomes so much easier. We
can assume that Goldbach knew French, had an idea of the current political
situation, and understood that numbers encode not separate characters but
syllables or even words. We can also assume that Goldbach received all of
Chétardie’s letters (the techniques for intercepting letters, opening and copying
them were well established by then).

Even so, it was not at all clear how such a cipher could be broken: on his
return to France, on September 27, 1744, Chétardie had his servant-secretary
Dupré, who had access to the cipher, taken to the Bastille, suspecting treason

3 Carl Hermann von Brevern, (1704––1744). A minister of Empress Elizabeth, the
president of the Academy of Sciences in 1740––1741.
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on his part. The secretary was interrogated for five months before being found
to be completely innocent and a naive simpleton, and released (Louis XV even
awarded him compensation for his time in prison).

However, it is possible to make a few guesses even without access to the
cipher. For example, a frequency analysis of the numbers shows that some
numbers occur much more frequently than others. Here are some that occur
more than 20 times in this letter:

95 la (35 times)
97 que (31 times)
204 a (33 times)
283 râı or r, ré (27 times)
451 le (24 times)
507 s’ (21 times)
562 de or dé (39 times)
813 et (22 times)
989 pour (22 times).

So, while frequency analysis is not directly applicable, Goldbach could
match these numbers to the most frequent French syllables, significantly
reducing the enumeration of variants.

Furthermore, there are numbers in the letter, and they are not encrypted,
e.g., dépêches des 18 et 25 janvier looks like 444 984 18 813 25 246. The
letters did not always reach their addressees, so Chétardie resent some letters
and mentioned the date of the letters previously sent. That is how we learn
that 813 is et (and) and 246 is janvier (January).

Syllables in French words are rarely repeated, but in superstitieux 123(su)
868(pers) 933(ti) 933(ti) 55(eux), the syllable ti is repeated. Undoubtedly,
Goldbach had a list of words with repeated syllables, as it was one of the well-
known(!) methods of breaking ciphers. Sometimes, Chétardie would start or
end a letter with a paragraph of unencrypted text, for example, saying that he
has already sent this letter and that he duplicates it just in case. If he was not
careful enough, such letters may not have been identical —which would have
given information as to which numbers stood for the same thing. Another
possibility is that Goldbach could have gotten hold of a draft letter (taken
from a waste bin, perhaps), which could be compared to all the encrypted
letters, and that would have given enough information to decrypt the cipher.

Thus, although breaking such a cipher seems to be a completely hopeless
task at first, Goldbach did have ways in which he could make a start, for
Chétardie, confident that the cipher could not be broken, was unlikely to
be careful about the frequency of numbers, references to dates, or repeated
syllables.

Regardless of the method of deciphering, at three o’clock in the morning
on June 17, 1744, soldiers led by General Ushakov came to Chétardie. They
ordered him to leave Moscow within a day and Russia within eight days and
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forcibly took from him Elizabeth’s portrait, which had been given to him by
the Empress herself.

In January 1744, a new contract with Goldbach was entered into, precisely
due to his success in deciphering. The minutes of the reports to Elizabeth on
3 January 1744 state:

... 18. Her Imperial Majesty [Elizabeth] deigns to hear and most
graciously approves the draft contract concluded by State Councilor
Goldbach regarding his entry into Russian service. Following his
humble report, it is proposed that he, Goldbach, be awarded up
to 1000 roubles as a reward for his diligent work and special skill
in deciphering secret letters, which Her Imperial Majesty has most
graciously approved.

Nikita Kalinin
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Daniel Bernoulli (1700––1782)

Daniel Bernoulli, one of the great scientists of the XVIIIth century, was born
on the 29th of January, 1700, in Groningen, Holland, to Johann Bernoulli,
a professor of mathematics at the local university, who later became one of
the greatest mathematicians in Europe. Johann spent a lot of time teaching
mathematics to his sons Daniel and Nicolaus (1695––1726) and instilled in them
a lifelong love for the subject. In 1705, the family moved to Basel, where
Johann was offered a post as a professor of mathematics at the university, which
became vacant after the death of his el-
der brother, the famous mathematician Jacob
Bernoulli. Daniel’s childhood was peaceful,
typical of the family of a successful scientist like
his father.

Daniel graduated from the Basel Gymna-
sium at the age of thirteen, and three years later
he was awarded a master’s degree in philoso-
phy. At his father’s insistence, Daniel began
to study medicine, as the practice of medicine
has always ensured material well-being and a
dignified position in society. It is worth noting
that Daniel’s father himself, on the advice of his
elder brother Jacob, studied medicine, became
a Doctor of Medicine, and alternated lecturing
in mathematics at the University of Basel with
medical practice.

In 1718, Daniel went to Heidelberg to continue his studies of medicine
under the eminent physician Nebel and moved to Strasbourg the following
year to improve his knowledge of anatomy and surgery. He returned to Basel
in 1720, defended his dissertation On Breathing, and was awarded the degree
of Licentiate of Medicine.

Daniel’s serious studies of mathematics started in his native Basel in
1720––1723, but he did not abandon medicine. In 1723, Daniel went abroad
again, this time to Venice, to complete his medical studies under the guidance
of the famous Italian physician Michelotti. He successfully combined his
medical studies with mathematics. In 1724, Bernoulli published his first
mathematical work Mathematical Exercises. He got help from his friend, a
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noble Venetian, who printed several copies at his own expense. The work was
devoted to defending the ideas of Daniel Bernoulli’s father and uncle against
the unfounded attacks of Italian scientists. This research made him famous in
Italian scientific circles, and the Academy of Sciences in Bologna included him
on its membership list.

From 1724, the Académie des Sciences de Paris began to run competitions
for finding the best solutions to various scientific problems, awarding generous
prizes to the winners. In this way, the Academy incentivized scientists to solve
the most urgent problems while contributing to the development of science.
The first competition was devoted to the subject “On the best way to construct
an hourglass or water clock used on ships.” Daniel Bernoulli sent his solution
to Paris and was awarded a prize. Overall, between 1724 and 1757, he was
awarded prizes ten times and was second only to Euler in the number of prizes
he received.

In 1725, the St. Petersburg Academy of Sciences was established, and
Nicolaus and Daniel Bernoulli were invited to join. They arrived in St. Pe-
tersburg on the 27th of October 1725. Daniel got the position of chair of
physiology with a salary of 800 rubles a year, and Nicolaus got the chair of
mathematics with a salary of 1000 rubles a year. Unfortunately, Nicolaus,
a brilliant mathematician, was not in good health and died seven months
later, just after his wedding. Empress Catherine I personally expressed her
condolences to Daniel on the death of his brother.

Daniel Bernoulli’s activities in St. Petersburg were extraordinarily produc-
tive. During his first year at the Academy, he made more than ten presentations
on solving problems in mathematics and mechanics, related to physiology.
In 1729, he began to work on Hydrodynamica and carried out numerous
experiments to test his hypotheses.

Unfortunately, the harsh St. Petersburg climate was affecting his health,
and in 1733 he tendered his resignation to the authorities of the Academy. On
the 24th of July of that year, he left St. Petersburg after eight years of service.
He returned to Basel, where he took up the chair of anatomy and botany. In
1750, he was offered the chair of physics at the University of Basel and held it
until the last years of his life. In 1734, Bernoulli published Hydrodynamica in
Strasbourg, the work that brought him worldwide fame.

It should be noted that Daniel’s association with the St. Petersburg
Academy did not cease after his departure. In 1737, Daniel Bernoulli was
elected an honorary member of the St. Petersburg Academy of Sciences with
an annual pension of 200 rubles. Most of his papers were published in
St. Petersburg: overall, between 1731 and 1775, 33 out of 41 papers saw the
light of day there.

Bernoulli’s main works relate to hydrodynamics, the kinetic theory of gases,
and the theory of periodic motion. Bernoulli, along with D’Alembert and
Euler, laid the foundations for the theory of partial differential equations.
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The cover page of the Hydrodynamica.

Probability theory also occupied an important place in his research. His most
famous paper, An Attempt at a New Theory for Calculating the Probability
of Random Variables, was published in St. Petersburg in 1738. In this paper,
Bernoulli introduced the concept of “moral expectation.” He applied this notion
to a problem that was called the “St. Petersburg game.”

The problem is put as follows: two players, Paul and Peter,1 are playing.
Peter tosses a coin; if it is tails, he pays Paul a ducat and the game ends; if it
is heads, the game continues. If it’s tails the second time, Peter pays Paul two
ducats, and the game ends; if it’s heads again, the game continues. The third
time, it’s either four ducats or the game continues, then either eight ducats or

1 This might have been an allusion to the preeminent apostles Peter and Paul, who have
an infinite time to play.
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the game continues, and so on. For the game to start, Paul has to give Peter
a certain amount of money in advance for the sake of fairness, which must
equal the mathematical expectation of the winnings. In this case, the possible
values of the winnings are 1, 2, 4, 8, etc. Thus, the mathematical expectation
of Paul’s winnings is 1

2
· 1 + 1

4
· 2 + 1

8
· 4 + . . . , thus being infinite. However,

the moral expectation of his winnings, according to Bernoulli’s theory, will be
finite. (Bernoulli’s main argument is that the utility of money is multiplicative,
not additive, and the value of one ducat for someone who has only ten of them
is much greater than for someone who has a thousand). This sophistry has
been called the “St. Petersburg paradox.” An explanation of the paradox of
the “Petersburg Game” was given by Alexander Khinchin in 1925, in his work
On the Petersburg Game.

Bernoulli’s scientific achievements were highly esteemed by his contem-
poraries. In his home country, he was elected Rector of Basel University
twice. He was also elected a member of many foreign academies and scientific
societies, including the Berlin Academy of Sciences in 1747, the Paris Academy
of Sciences in 1748, and the Royal Society2 in 1750. Daniel Bernoulli was
among seven foreign scientists honored by Empress Catherine II with the gift
of a personal copy of the gold medal minted in commemoration of the victory
over the Ottoman Empire.

Daniel Bernoulli lived a long life; he never married. He coined the terms
“hydrodynamics” and “steady state,” which became universally accepted and
are still in use today. In his later years, Bernoulli turned to charity. At his
own expense, he built a small hotel for traveling students and scientists, where
they could find food and shelter. He was a modest and well-balanced man,
well-respected not only by his colleagues but by everyone who knew him.

On the 17th of March, 1782, Daniel Bernoulli died in Basel at the age of 82.

Larisa Konovalova

2 The Royal Society of London for Improving Natural Knowledge.



Bernoulli’s principle in hydrodynamics

Daniel Bernoulli is often regarded as the father of hydrodynamics. “It seems
that the first person to use this term was M. Daniel Bernoulli, who gave this
title to his Treatise of fluid motions, printed in Strasbourg in 1738 [6]. If the
title was new, it must be admitted that the work was also new. M. Daniel
Bernoulli seems to be the first who reduced the laws of fluid motion to safe
and non-arbitrary principles, which none of the authors of hydraulics had done
before him. The same author had already given in 1727, in the Memoirs of the
Academy of Petersburg [5], an essay on his new theory.” (D’Alembert, [12]).

As a mathematician and physicist, Bernoulli used analysis, particularly
differential calculus, to formalize some fundamental laws of fluid mechanics
and put them into equations.

1 A problem of vessels and drain

His memoir Hydrodynamica [6], dedicated to the Duke of Courland and
Semigallia Biron, brings together various theoretical contributions and com-
ments on the subject of fluid forces and movements, corroborated by numerous
experiments.

These include fluids flowing through vessels with various shapes of
openings or pipes, driving effect by rotation or translation of the
vessels, and even an (unrealistic) application to navigation.

These include fluids flowing through vessels with various shapes of openings
or pipes, driving effect by rotation or translation of the vessels, and even an
(unrealistic) application to navigation.

1.1 A counter-intuitive result. The starting point of all his computations,
now referred to as Bernoulli’s principle, relates the velocity of a fluid to its
pressure at a given point. It can be stated as follows

Bernoulli’s principle. In a horizontally flowing fluid, the pressure of the fluid
at points where its velocity is high is lower than the pressure of the fluid at
points where its velocity is low.

Thus, in a horizontal pipe with sections of different diameters, the pressure
of the water in the sections where the water is flowing fast is lower than in the
sections where the water is flowing slowly. This may seem counter-intuitive,
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as one would tend to associate high velocity with high pressure. However, this
principle simply translates to the fact that water will accelerate if there is more
pressure behind it than in front of it.

1.2 A counterpart of Huygens principle in mechanics. Bernoulli derived this
principle by analogy with the living force principle of Huygens in mechanics
[20]. In his own words, the proof is the following :

“The potential elevation of the system, each part of which is moved by any
velocity, shows the vertical height which the center of gravity of this system
reaches, if each particle, by the upward movement raised by its velocity, is
understood to rise as far as it can.

The vertical height marks the actual descent by which the center of gravity
descends after each particle has been at rest.

The potential elevation is necessarily equal to the actual descent when all
motion remains in the spread matter.” (Bernoulli, [6])

The potential elevation is therefore connected to the velocity, which is itself
computed in terms of the flux: “The movement of fluids is very close to such
that everywhere the velocity is reciprocally proportional to the corresponding
size of the vessel” (Bernoulli, [6]). The actual descent is expressed in terms of
the pressure using the laws of hydrostatics.
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Bernoulli was then able to use these conservation laws on infinitesimal
volumes and introduced geometric considerations to compute, for instance,
the drain rate of a vessel.

2 Modern formulation

Bernoulli’s original text is quite difficult to access today: the terminology no
longer corresponds to current standards, the hypotheses are not always clearly
formulated (except in the form of rules for applications), and the notations are
very confusing.

The principle is nevertheless explained nowadays in a simple form in all
fluid mechanics courses.

2.1 The pressure, a macroscopic observation of internal interactions. The
pressure involved in Bernoulli’s principle is the internal pressure of the fluid,
which is exerted in all directions as the fluid flows. Note that this pressure is
not the same as the pressure the fluid would exert on an object that would get
in its way and stop its movement.

It is interesting to note that Bernoulli’s memoir actually contains the first
elements of the kinetic theory of gases: fluid particles have a state of thermal
agitation that is all the more vivid the higher the pressure. The pressure is, in
fact, the result of the many shocks between these fluid particles.

2.2 A global energy balance. It is the pressure of the neighboring portions
of the fluid that is the source of the force providing the fluid with the work
necessary for its acceleration.

Consider a pipe in which water is flowing in a laminar way from left to right.
When the volume of water, shown in dark blue in the figure below, reaches
the narrow part of the pipe, its speed increases. The pressure force generated
by the pressure on the left of the volume of water in question pushes it to the
right and provides it with positive work since it pushes it in the direction of
its movement. The pressing force generated by the pressure to the right of the
volume of water under consideration pushes it to the left and provides it with
negative work since it pushes it in the opposite direction to its displacement.

It is known that the water must accelerate (for conservation of the volume
flow), and therefore the total work supplied by the pressure forces to the portion
of fluid considered must be positive.

The work WF of a force F (parallel to the motion) is written Fd, d being
the distance traveled when the force is applied. The pressure force is given
by PS, P being the pressure and S being the area to which the pressure is
applied. Thus, we write :

Wpressure = PSd .

The area S` on the left is larger than the area Sr on the right. But when the
volume of the water under consideration enters the narrow part of the pipe, it
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One of the experements from Bernoulli’s Hydrodynamica book.

deforms and lengthens: the pressure force due to P` on the right-hand side is
therefore applied over a greater distance d` than the pressure force due to Pr
on the left-hand side. The total volume of the section of water studied remains
constant S`d` =Srdr. Therefore, the pressure P` of the water on the left must
be greater than the pressure Pr of the water on the right for the sum of the
work done on the volume of the water studied to be positive overall.

3 Euler equations versus Bernoulli equation

Bernoulli’s principle can be made more quantitative by writing a detailed
energy balance. This leads, in particular, to clarifying the assumptions on the
flow.

3.1 An inviscid incompressible flow. Bernoulli’s work mainly concerns water,
which is considered incompressible. Section 8 of Hydrodynamica proposes
actually an extension to the case of “elastic fluids,” taking into account the
effects of compressibility (which was a very original contribution), but we will
not treat this case here.

Bernoulli also specifies in his manuscript that he neglects all the effects
of viscosity, and in particular the adhesion to the boundary (which he calls
“friction” or “tenacity” of the fluid).

For an incompressible inviscid fluid of density ρ, Euler’s (later) work [15]
shows that the dynamic equation governing the flow can be written as

∇x ·u = 0︸ ︷︷ ︸
incompressibility constraint

ρ · (dtu+ (u · ∇x)u)︸ ︷︷ ︸
acceleration along the flow

= −ρgez −∇xP︸ ︷︷ ︸
forces

(1)

where x= (x1, x2, z) is the 3D vector of spatial coordinates, u= u(t, x) is a
3D vector field representing the bulk velocity of the fluid at time t at a given
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position x, g is the gravity and P = P (t, x) is the (scalar) pressure. From
the mathematical point of view, P is just the Lagrange multiplier associated
with the incompressibility constraint. Indeed, taking the divergence of the
second equation, we get ∇x · ((u · ∇x)u) =−∆xP , meaning that P depends in
a non-local way on u and its derivatives and on the boundary conditions.

Note that the Eulerian description of the fluid with u and P is, in a way,
the point of view of an observer who stands at a given position (as opposed to
the Lagrangian description following the fluid particles).

3.2 The Bernoulli equation. In his work, Bernoulli also restricts his attention
to a steady state flow, which implies that the Eulerian velocity field u does not
depend on time u= u(x). Recall that this does not mean that a given fluid
particle has a constant velocity, but that at any given point in the domain
occupied by the fluid, an observer always sees the same flow. The fluid
particles, on the other hand, are advected by the flow: they move along the
streamlines with a velocity that will be precisely given by Bernoulli’s relation.

The last assumption, which is not formulated in a very precise and rigorous
way, concerns the geometry of the flow. Bernoulli assumes for simplicity that
the fluid is “divided into layers perpendicular to the direction of motion”, and
that “the particles of fluid [are] moved with the same velocity, so that every-
where the velocity of the fluid is reciprocally proportional to the corresponding
magnitude of the vessel.” This assumption can be relaxed by considering a
small tube of fluid around a field line, but a necessary condition is that these
lines remain approximately parallel, i.e. that the flow is laminar.

The definition of laminar flow is actually not completely consensual. We
will limit ourselves here to the case of irrotational flows rotu= 0. Since u is
also divergence-free, the convection term can be rewritten

(u · ∇x)u = ∇x
|u|2
2
−u∧ (rotu)−u(∇x ·u) = ∇x

|u|2
2
.

which is also a potential term. We therefore end up with Bernoulli’s equation

∇x
(
ρ
|u|2
2

+ ρgz+P

)
= 0 .

For general laminar incompressible flows, the conservation holds only along
the flow lines :

u · (u · ∇x)u = (u · ∇x)
|u|2
2

,

so that, given two points l and r on the same flow line

ρ
|u`|2

2
+ ρgz` +P` = ρ

|ur|2
2

+ ρgzr +Pr .

This implies, in particular, Bernoulli’s principle (with zl = zr).
However, the assumption of a permanent laminar flow in the geometry

considered by Bernoulli is questionable. It is briefly discussed in his disserta-
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tion, but the physical phenomena involved are extremely complicated and are
actually still poorly understood.

4 Eddies and turbulence

This final section provides an overview of the complexity mentioned above.

4.1 Creation of vorticity. As shown previously, an irrotational flow satisfies
the Bernoulli relation. On the other hand, it is easy to verify that an
incompressible inviscid flow (with impermeability condition u · n= 0 on the
walls) does not create vorticity. Indeed, in two dimensions of space, the
vorticity ω=∇⊥x ·u is simply transported

dtω+ (u · ∇x)ω = 0,

and therefore conserved. In three dimensions of space, the vorticity Ω = rotu
satisfies

dtΩ + (u · ∇x)Ω = Ω · ∇xu.
There is an additional “stretching” term, but if the vorticity is initially zero, it
remains so (provided that the solution is smooth enough to make sense of the
stability estimate).

Bernoulli indicated in his memoir that his model is locally flawed, especially
near the opening and the boundaries of the vessel, due to viscosity (which is
never exactly zero) and wall adhesion. The Euler equations (1) were generalized
for viscous fluids by Navier [24] and Stokes [27]

∇x ·u = 0

dtu+ (u · ∇x)u︸ ︷︷ ︸
acceleration

= −gez −∇xPρ︸ ︷︷ ︸
forces

+ ν∆xu︸ ︷︷ ︸
viscosity

(2)

where the viscosity term (with ν > 0) accounts for the non-conservative internal
forces (friction between neighboring fluid particles having different speeds).
These equations do not seem at first sight to be very different from (1),
especially when the Reynolds number (proportional to 1/ν) is very large. In
particular, we have the transport-diffusion equation for vorticity Ω

dtΩ + (u · ∇x)Ω− ν∆xΩ = Ω · ∇xu,

which should preserve the irrotationality of the flow.
However, as the Navier–Stokes equations are of order 2 (the Laplacian in-

volves second derivatives), one must impose more conditions on the boundaries,
which allow in particular to model the effect of adhesion to the wall (u= 0 on
the walls). This condition is, in general, different from the prediction given
by Euler’s equations for an inviscid fluid. It is therefore expected that even
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weakly viscous fluids (ν << 1) behave very differently from ideal fluids (ν= 0),
especially in the vicinity of the walls. Observations show that small vortices
are generated near the walls and can potentially destabilize the whole fluid.

4.2 Transition to turbulence. Prandtl was the first to study these boundary
effects in more detail, introducing the notion of boundary layer and character-
izing it by means of multi-scale expansions [26]. The main idea is that far from
the boundary the viscous flow should resemble the idealized flow uE governed
by (1), which is then connected to the boundary condition by a fairly steep
profile defined on a layer of size

√
ν. To understand this connection, the idea is

to zoom in on the direction orthogonal to the boundary at scale
√
ν. For a sta-

tionary flow, in the simple geometry where the domain is 2D and the boundary
is x2 = 0, the equation for this profile u= (v1(x1, x2/

√
ν),
√
νv1(x1, x2/

√
ν))

reads 
∇x · v = 0

(v · ∇x)v1− d2
x2x2

v1 = −dx1pE(x1, 0)

v(x1, 0) = 0, lim
x2→∞

v(x1, x2) = uE(x1, 0)

(3)

where (x1, x2) are the tangential and normal coordinates and uE , pE are the
velocity and pressure obtained by the Euler equation (1).

Unfortunately, this equation is not always mathematically well posed. The
stability of the boundary layer (and thus the validity of the two-scale expan-
sion) is conditional on the fact that the gradient of pressure imposed by the
internal flow dx1pE(x1, 0) does not become positive and too large. Physically,
in the case of flow around an obstacle, it is observed that the boundary layers
that form upstream of the obstacle progressively lose their momentum and

A numerical simulation of a flow around an obstacle (credit : Bertrand Maury), so
we see the mesh. The flow is laminar ahead of the obstacle (on the left), and becomes
turbulent (with Von Karman alleys) past the obstacle. The grey level corresponds to
the vorticity intensity.
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cannot climb the adverse (positive) pressure gradient downstream, so they
separate from the wall. In other words, the interaction with the boundary
is expected to create vorticity, and this vorticity is then propagated within
the fluid in the form of small vortices at all scales. This has two extremely
important consequences. On the one hand, even if the viscosity is small, the
presence of these small structures makes the flow quite strongly dissipative.
On the other hand, the velocity field loses its regularity, and the Navier–Stokes
equations (2) themselves can become unstable.

Understanding this transition mechanism to turbulence is a major challenge
for physicists and mathematicians. Without making an exhaustive list of
mathematical contributions on this subject, we can summarize the state of
the art as follows

• the multi-scale expansion proposed by Prandtl is justified in some situa-
tions when the boundary layer is stable, for instance, with a negative gradient
of pressure [25, 22, 17] (see also [8, 9, 18] and the references therein). The
separation of the boundary layer has been described formally by Goldstein
[19], and recently studied mathematically in [13].
• the instability of the flow in presence of small-scale structures is so strong

that one even loses the uniqueness of solutions for the Euler equations [14] as
well as for the Navier–Stokes equations [7, 1]. This means that, for flows of
this complexity, it is very difficult (if not impossible) to follow precisely all the
details of the velocity field.
• the enhanced dissipation and inviscid damping due to the combination of

the small viscosity and the presence of small-scale structures are established
for particular flows (typically shear flows) in the absence of boundaries (see
the review [2] for a simple presentation of these mechanisms).
• in regimes when turbulence is fully developed, Kolmogorov proposed in

1941 a statistical approach [23], predicting, in particular, the distribution of
eddies at different scales (see [16] for instance). Although completely heuristic,
these predictions are consistent with the critical regularity for the Navier–
Stokes equations (the threshold for the uniqueness [10, 21]).

However the prediction of the emission of vortices at the boundary layer
(destabilization of the laminar flow), the probabilistic study of the Navier–
Stokes equations to rigorously derive the Kolmogorov model (fully turbulent
regime), or the mathematical description of the transition between these two
regimes remain very challenging open problems. They probably require a very
different approach from the usual point of view adopted in PDEs, where one
could take advantage of the instability and mixing properties as is the case for
example in the KAM theory of dynamical systems (see [3, 4] for results in this
direction).
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Leonhard Euler (1707––1783)

The breadth of Euler’s interests and the variety of his activities were not
inferior to those of Leonardo da Vinci: besides being a mathematiciand and a
physicist, he was an architect (he made calculations for the innovative Kulibin1

bridge project), a geographer (Euler was in charge of the compilation of the first
Atlas of the Russian Empire), he was involved in military science, navigation,
astronomy, etc.

Euler obtained fundamental results and laid the foundations for many
branches of mathematics: number theory (the Riemann zeta function and
continuous fractions; he also introduced the
concept of a primitive root of unity), anal-
ysis (elliptic functions, series summation),
calculus of variations (the Euler–Lagrange
equation), special functions, surface geom-
etry (the definition of curvature by normal
cuts, equations of geodesics, the concept of
conformal mapping). His results in me-
chanics are no less significant; it would
suffice to mention Euler angles and the
hydrodynamic Euler equation.

Leonhard Euler, one of the greatest
mathematicians ever, was born in Basel,
Switzerland, on April 15th, 1707, into the
family of a poor Protestant priest. Basel
was a center of European education and
culture at the time. The University of
Basel, founded in the XVIth century, was a hotbed of enlightenment ideals.
During the mid-XVIth century, the Bernoulli family moved there from the
Netherlands, a fact that would play an important role in Euler’s life.

Leonhard Euler was initially educated by his father, who, as a young man,
had successfully studied mathematics under Jacob Bernoulli. The pastor was
preparing his son for a career in the clergy but taught him mathematics as
well. While in his last year of grammar school, Euler attended lectures in
mathematics at the university, where one of the greatest mathematicians of

1 Ivan Kulibin (1735––1818), famous Russian self-taught mechanic.
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the time taught: Johann Bernoulli (1667––1748), the younger brother of Jacob
Bernoulli. Johann Bernoulli noticed the talented youth and advised him to
study the primary sources independently. He also allowed him to come to
his house on Saturday afternoons to discuss any difficult parts encountered.
During these sessions, Euler met his sons Nicolaus (1695––1726) and Daniel
(1700––1782).

In 1723 Euler was awarded a Master of Arts degree. For the test, he gave a
speech in Latin comparing the philosophies of Descartes and Newton. At his
father’s request, Euler studied theology. Both father and son realized that in
Switzerland an academic career was unpromising: the number of applicants for
professorships far exceeded the number of vacancies. In 1727, Euler applied for
the position of chair of physics at the University of Basel, but without success.

Russia, St. Petersburg (1727––1741). Peter the Great wanted to establish an
Academy of Sciences in Russia as early as the last years of the XVIIth century.
He discussed his plans with the great Leibniz three times. Peter did not live
to see the Academy established, because only in 1724 did the Senate decide to
establish the Academy of Sciences, and it was inaugurated by Catherine I in
1725.

The St. Petersburg Academy of Sciences stood out from other European
academies in several ways. Firstly, it had a fixed budget of 24 000 rubles per
year and generous remuneration for its professors; by comparison, the country’s
total budget was about 8 million rubles. Secondly, the academy had a more
universal character, consisting of three classes: mathematics, physics, and the
humanities. Thirdly, the academy had a school and a university.

There were not enough Russian scientists, so the government invited
foreigners. Invitations were sent to the sons of the famous Johann Bernoulli —
Nicolaus and Daniel. Nicolaus became a professor of mathematics, and Daniel
became a professor of physiology. Euler, seeing his friends departing to
Russia, had, in his own words, “an indescribable desire to go with them to
St. Petersburg.” Daniel promised to put in a good word for him and fulfilled
his promise: Euler was offered a position as an adjunct in the department of
physiology, with a salary of 200 rubles a year. Leonhard was not embarrassed
by the fact that he was to practice medicine. In those days medicine was not
perceived as a science far removed from mathematics; for example, Johann
Bernoulli alternated between mathematics and medical practice.

In 1727, twenty-year-old Euler, having received 130 rubles to cover travel
expenses from the St. Petersburg Academy of Sciences, left for Russia. He
became immediately involved in the intensive work of the Academy, and
his papers published in the Commentaries of the St. Petersburg Imperial
Academy of Sciences quickly earned him fame and a place of honor among
mathematicians in Europe. In 1730, Euler was already a professor of physics,
with a salary of 400 rubles. Two years later, Daniel Bernoulli left for Basel,
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From the letter from Euler to Ehler, March 9th, 1736: find a walk through the city
that would cross each bridge once and only once. The starting and ending points of
the walk need not be the same. This is knows as “The problem of the 7 bridges of
Königsberg”.

and Euler took the chair of mathematics with a salary of 600 rubles per year.
Euler became one of the most important figures in the Academy of Sciences;
he constantly presented papers, published articles, and did not refuse any
assignments. He was involved in drawing up a general map of Russia and
engaged in cartography, but mathematics was the main thing in his life. It
was during these years that he emerged as a great mathematician. However,
the intense work had a detrimental effect on his health, and at the age of 27,
he went blind in his right eye.

On the 7th of January, 1733, Euler married Katharina Gsell, the daughter of
an academic painter from Switzerland. They lived happily for over 40 years, his
wife bearing him 13 children, but only three sons and two daughters survived.

Euler was a non-confrontational and deeply religious person. He was kind
and could get on well with anyone. He worked under any circumstances and
in any environment: “A baby on his lap, a cat on his back — that’s how he
wrote his immortal works,” as Dieudonné Thiébault said.2

2 “[Euler] a fait faire aux sciences mathématiques, des pas de géant; et ses immenses
travaux ne lui coûtoient rien : c’est au milieu de sa famille, et du bruit que des enfans
peuvent fàire; c’est en jouant lui-même avec celui qu’il prenoit sur ses genoux, et avec un
angola monté sur son épaule, qu’il a composé quelques-uns de ces Mémoires que l’Europe a
admirés et admirera toujours.” Dieudonné Thiébault, Mes souvenirs de vingt ans de séjour
à Berlin, vol. 5, p.13 (Paris, 1804). Angola is a Turkish Angora cat.
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A letter to Goldbach, where Euler complains that his work on cartography cost him
an eye.

By 1740, Euler’s health had deteriorated due to constant overwork and the
harsh climate in St. Petersburg. At that time, the Prussian King Frederick II
intended to convert the Royal Society into an Academy of Sciences, and to this
end he invited Euler to Berlin. Euler accepted the offer and on 29 May 1741 he
resigned from the St. Petersburg Academy of Sciences. However, he retained
his honorary membership in the St. Petersburg Academy with a pension of 200
rubles a year. In June of 1741, Leonhard Euler left St. Petersburg for Berlin.

Prussia, Berlin (1741––1766). Euler’s Berlin period lasted for a quarter of
a century, from 1741 to 1766. Euler’s relationship with the Prussian King
went wrong. In Berlin, it was thought that the duty of a scientist was,
among other things, to decorate parlors and to entertain guests with elegant
conversations. Euler did not do that; he engaged in mathematics. In 1744,
the Berlin Academy of Sciences was inaugurated, but Euler was not offered
the position of president of the Academy after Leibniz left but was appointed
director of the mathematical department of the Academy.

Over the years in Berlin, he published 109 papers in the Proceedings of
the Petersburg Academy of Sciences and 127 in the Proceedings of the Berlin
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Academy of Sciences. He rendered numerous services to the Russian Academy
of Sciences, took care of the replenishment of their libraries, and corresponded
extensively with Russian academicians. It should be noted that throughout his
life the great mathematician felt the deepest gratitude to the Russian Academy
of Sciences, knowing that his move to St. Petersburg was of decisive importance
for his life.

In a letter to Schumacher3 on November 18th 1749 Euler wrote:

I and all the others who were lucky to be at the Russian Imperial
Academy for some time must admit that everything we have become
is due to the favorable circumstances in which we found ourselves. As
for myself, in the absence of such excellent circumstances, I should
have been obliged mainly to turn to other occupations in which, by all
accounts, the only thing I could indulge in was penny-pinching. When
his Royal Majesty asked me recently where I had learned what I know,
I answered, telling the truth, that I owed everything to my stay at the
Academy of St. Petersburg.

Euler’s financial situation was more than modest. He was constantly
concerned about these financial difficulties, and in the early 1750s he set up a
boarding school at his house for his Russian students.

Euler made every effort to ensure that his family had a comfortable life.
In 1753 he managed to buy a beautiful small estate in Charlottenburg, with
a house and a garden. In 1756, the Seven Years’ War between Prussia
and Russia began. Life was becoming more expensive, money was losing
value, yet wages were not increasing. The advancing Russian army destroyed
the estate in Charlottenburg, and the Russian officers whom Euler knew in
St. Petersburg, including his godson, persuaded Euler that he, as an honorary
member of the Academy, could demand compensation. Euler wrote letters to
St. Petersburg, including some to Lomonosov,4 but the matter dragged on.
Only Catherine II, who ascended the throne after the coup of 1762, ordered
that Euler be compensated for all the damages (1200 rubles, his annual salary
in St. Petersburg) and asked him to return to St. Petersburg.

3 Schumacher, Johann Daniel, (1690––1761). The director of the Library of the Russian
Academy of Sciences and later secretary of the Russian Academy of Sciences, responsible for
dealing with all financial and economic matters. He was born in Alsace and came to Russia
with Pierre Lefort, nephew of Peter the Great’s admiral. In 1721, Peter the Great sent him
to France, England, and the Netherlands, to persuade scholars recommended by Christian
Wolff to come to Russia. He was married to the daughter of Peter the Great’s cook.

4 Lomonosov, Mikhail Vasilyevich, (1711––1765). The first Russian scientist, physicist,
chemist, metallurgist, and creator of the kinetic molecular theory of heat. Lomonosov was
of peasant stock, so he had to forge documents to enter the Slavic Greek Latin Academy in
Moscow, the only higher education institution in Russia at the time. In 1735, he enrolled as
a student at the University of the Academy of Sciences (he subsequently became its member
in 1745). In 1736 he went to Marburg and was a pupil of Ch. Wolff. In 1740, on his way
back to Russia, he was commandeered into the Prussian army but escaped. In 1755 he drew
up a project for Moscow University, which was renamed Lomonosov University in 1940 in
his honor.
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Meanwhile, Euler’s position in Berlin weighed him down. In 1759, Mauper-
tuis, president of the Berlin Academy of Sciences, died. Note that his salary
was double that of Euler. Euler hoped that Friedrich would offer him the
post, but in vain. Euler’s relations with Friedrich took a turn for the worse
in the early 60s; the humiliating position he was put in was also pushing him
towards a breakup: the great mathematician received a salary of 1,200 thalers
per annum, or approximately 400 rubles.

In December 1765, Euler wrote to Chancellor Count Vorontsov requesting
to be made a member of the St. Petersburg Academy of Sciences. Euler put
forward the following demands: the post of vice-president with an annual salary
of 3000 rubles for himself, provision of a flat free of billeting,5 as well as a chair
of physics for his eldest son with a salary of 1000 rubles per year, and provision
of decent jobs in medicine and artillery for his middle and younger sons.

Vorontsov relayed Euler’s conditions to Catherine II, to which the empress
replied “Of course, I find him quite worthy of the position he desires ... At
the present state of the Academy, there is no money for the salary of 3000
rubles, but for a man of such merit as Mr. Euler I shall add to the academic
salaries from the state revenues, which together would amount to the requested
3000 rubles. He will have official quarters and not the slightest shadow of a
soldier. Although the Academy does not have a free chair of physics with a
salary of 1000 rubles for the eldest son, I will nevertheless assign it [the salary]
to him, as well as an official private medical practice to the second son, and
a guaranteed position should he wish to enter public service. The third son
will have a position without any difficulty. I am sure that my Academy will
rise from the ashes thanks to such an important acquisition, and I congratulate
myself in advance on having returned the great man to Russia.” In 1766, Euler
was back in Russia.

Russia, St. Petersburg (1766––1783). Leonhard Euler returned to St. Pe-
tersburg on the 17th of July 1766. The next day, the empress received Euler
and his two elder sons. Catherine II granted him 8000 rubles in silver to buy
a house. Euler bought one on the Nikolayevskaya embankment (Lieutenant
Shmidt Embankment, nowadays), where he lived till the end of his days. School
No. 27 is housed in that building these days, and a commemorative plaque
hangs on its walls.

Euler immediately became involved in the work of the St. Petersburg
Academy of Sciences. He brought many manuscripts back with him that he
had not had time to publish in Berlin. Euler, still full of new ideas to pursue,
worked with the same zeal as before.

Euler was interested in the problem of blood movement through the arteries.
The topic was important for military surgery. In January of 1737, he took part

5 A billet is a place where soldiers are housed temporarily. Rural and urban residents
were supposed to provide free accommodation for soldiers because the Russian army didn’t
have barracks during the whole of the 18th century, and being released from this duty as a
resident was rare. Thus, an apartment free of billeting was quite a luxury.



Leonhard Euler 43

in a discussion of Josias Weitbrecht’s work, On the Movement of Blood, at the
Academy. In 1742, Euler formulated and solved the problem of the flow of
fluid in an elastic tube for the first time.

In a paper in 1775, Euler wrote about his investigations of the flow of
blood through the arteries. Due to considerable mathematical difficulties, he
was unable to solve the resulting system of equations and uttered the famous
phrase: “If God had wanted us to understand the flow of blood through the
arteries, he would not have invented such complex equations.”

In 1774, Euler’s wife died and was buried in the Smolensky Lutheran
Cemetery. In order not to change his way of life, Euler married her half-
sister Abigail Gsell. Euler’s eyesight deteriorated dramatically. Catherine II
summoned the famous oculist, Baron Wentzel, for Euler personally, and
Wentzel successfully performed an operation to remove the cataract. Euler
was ordered to rest his eyes for a few days after the procedure, but he could
not restrain himself from continuing his work. As a result, Euler became
permanently blind.

Blindness began to be coupled with deafness, but nothing stopped Euler
from working: he started dictating his writings. During the 12 remaining years
of his life, he dictated 10 large books and over 400 articles. He managed to
write very clearly on a black table with white chalk. In the later years of his
life, academic publications could not keep up with the flow of works authored
by the blind scholar. Euler jokingly promised the director of the Academy,
Count Orlov, that his works would fill the Commentaries of the Academy for
20 years following his death. Indeed, the Academy continued publishing his
works for 47 years after his death, bringing the number to 771.

The 18th of September, 1783, started as an ordinary day in Euler’s life:
he was teaching mathematics to his grandson, doing calculations. At about
5 p.m., he felt the onset of an acute headache. Before he lost consciousness,
he said: “I am dying.” At 11 p.m. Euler was gone. According to Condorcet,
“he ceased to live and calculate.” The great mathematician was buried at the
Smolensk cemetery next to the grave of his first wife. In 1956, his ashes were
transferred to the Necropolis at the Alexander Nevsky Lavra.

Leonhard Euler is the most prolific mathematician in history. Five hundred
thirty books and articles were published during his lifetime. In 1910, Eneström
compiled a bibliography containing 886 titles. For over a hundred years, the
Swiss Naturalists Society was publishing a collection of Euler’s works: seventy-
two volumes were published by the early 1980s, with eight additional volumes
of Euler’s scientific correspondences planned for publication. The very last of
these volumes saw the light of day in 2023.6

Larisa Konovalova

6 https://www.springer.com/series/4854.

https://www.springer.com/series/4854


Leonhard Euler’s triangles and elliptic curves

Leonhard Euler left us with an immense legacy of works in mathematics,
physics, and many other subjects, and much of modern mathematics starts
with an idea of Euler. Here, we will focus on his celebrated paper on elementary
geometry Easy solutions to some difficult geometric problems [4], published in
St. Petersburg in 1767, on Euler’s return to Russia after a twenty-five-year stay
in Berlin. This paper is the starting point for many theorems about triangles
that illustrate the beauty of mathematics in a way that is accessible to high
school students. But it also inspired, as we shall see, interesting developments
in algebraic geometry, where other ideas tracing back to Euler also play a role.

Let us recall what the paper is about. Euler considers four centres of a
triangle ABC: the orthocentre E (in Euler’s notation) is the intersection of
the altitudes; the centroid or centre of gravity F is the intersection of medians;
the incentre G and the circumcentre H are the centers of the inscribed and
of the circumscribed circle, respectively. He shows that E, F , H lie on a
line, which is now called the Euler line, and that EF : FH = 2. He then
shows how to reconstruct the triangle from any of the triangles EFG, EGH,
FGH: out of the edge lengths of these triangles he constructs a cubic equation
whose roots are the edge lengths of the original triangle. The property that
the cubic equation must have three positive roots gives constraints on the
distances between the centers, which he discusses in the case of the isosceles
triangle. One of the consequences of Euler’s calculations is the so-called Euler
relation R2 − d2 = 2rR involving the distance d=GH between incentre and
circumcentre and the radii r, R of the inscribed and of the circumscribed circle.
From this relation the Euler inequality R≥ 2r readily follows.

At this point we need to spoil the exposition with a necessary remark.
Euler discusses various relations between distances in the triangle but does not
explicitly consider the radius of the circumscribed circle. So, neither Euler’s
relation nor Euler’s inequality appears in this paper. On the other hand, the
inequality R≥ 2r does appear in a 1746 article of the British mathematician
William Chapple [2], published in a supplement to the Gentleman’s Magazine,
albeit with a questionable proof.

Certainly, the Euler line is in the paper, and it later turned out that other
many further remarkable centers also lie on this line [14], in particular the
center of the Feuerbach nine-point-circle. But here we would like to follow
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Euler’s line.

another thread and for this we have to introduce another Swiss1 émigré in
St. Petersburg. Euler’s sight had deteriorated since 1738 to reach complete
blindness by 1772, so he invited the seventeen-year-old Nicolaus Fuss, who
had studied with Daniel Bernoulli in Basel, to assist him in his work. Fuss
participated in the publication of more than 200 papers that Euler wrote
between 1772 and 1783, the year of his (Euler’s) death. Fuss later married
Euler’s granddaughter Albertine Euler, became an esteemed academician and
contributed in various capacities to developing science and education in Russia.
We owe him a moving biographical obituary of Euler. In 1794 Fuss proves
a theorem [7] generalizing Euler’s relation to bicentric quadrilaterals: the
distance d between the centers of the circumscribed and inscribed circles of
a bicentric quadrilateral is related to their radii R, r by the formula

(R2− d2)2 = 2r2(R2 + d2).

Incidentally, in the same volume of the Proceedings of the Academy there
are still six articles by Euler, the last of which with the interesting title “Is
1000009 a prime number or not? ” (it is not since, as Euler shows, it can be
written as the sum of two squares in two different ways!). Fuss then tries to
find a similar relation for polygons with more sides. In the 1798 the volume of
the Proceedings (four articles of Euler here) he publishes the solution to this

1 Since the author of this text suspects that one of the reasons for asking him to write
about Euler is that he is Swiss, he will unashamedly bias the exposition injecting a couple
of further Swiss characters into the story.
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Poncelet’s theorem. One conic is inscribed in a pentagon while the second conic is
circumscribed about it.

problem for up to eight sides, but only in the special case where one vertex of
the polygon is assumed to lie on the line connecting the centers of the two circles
[8]. Jakob Steiner (another Swiss mathematician) poses the general problem
in the second volume of Crelle’s Journal in 1826 [16] and gives then a solution
without proof for up to eight sides (but omitting the heptagon). An interesting
coincidence is that the paper following [16] is Niels Abel’s “Recherches sur les
fonctions elliptiques” marking the beginning of the theory of elliptic curves,
which turned out to be the key to solve the general case.

Carl Gustav Jacobi tells this story in 1828 [13] and comments that Fuss
incurred in the “unfortunately not frequent” error of formulating a claim in
a special case, while it actually holds in the general case. Indeed, in the
meantime, in 1822, Poncelet’s book [15] had appeared. In it, it is shown that
if a pair of conic sections have the property that one is inscribed in a polygon
and the other circumscribed about it, then there are infinitely many polygons
with this property, and any point of the circumscribed conic can serve as a
vertex. No Swiss connection here but a Russian one: Jean-Victor Poncelet
participated in Napoleon’s Russian campaign (which some of the readers will
know as the Patriotic War of 1812) and was captured at the Battle of Krasny.
He wrote his book as a prisoner of war in Saratov between 1812 and 1814.

Jacobi shows that Fuss’s equations are equivalent to Steiner’s and offers a
general analytic solution for an arbitrary number of sides in terms of elliptic
integrals. Later Arthur Cayley2 [1] gave an algebraic solution, giving for each
n an equation for the locus of pairs of conic sections admitting an n-sided
polygon inscribed in one and circumscribed about the other. He uses the

2 ... who lived the first 8 years of his live in Saint Petersburg.
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The trajectory of a particle bouncing at a straight line.

theory of elliptic functions of Abel and Jacobi, but reminds us that his result
is really a consequence of Euler’s addition formulae for elliptic integrals [3, 5].

An explanation of these results in modern terminology was given more
recently by Phillip Griffiths and Joseph Harris [12, 10, 11]. Given two generic
conic sections, they observe that the variety of pairs consisting of a point of the
first conic and a line through it which is tangent to the second conic is a complex
elliptic curve (which is topologically a torus S1×S1) with two involutions: one
replaces the point by the other intersection point of the line with the first conic
and the other replaces the tangent with the other tangent through the same
point. The composition of these involutions is the translation by an element of
the elliptic curve and we have a polygon if and only if this element has finite
order. Thus, Cayley’s result can be understood as the description of the locus
of points of finite order in a family of elliptic curves.

The author’s interest in this story came from a recent result of Giovanni
Gallavotti and Ian Jauslin [9] who reconsider a dynamical system introduced
by Ludwig Boltzmann in 1868: a particle in a plane subject to an attractive
central force with an inverse-square law bounces elastically at a straight line
not going through the center. As shown by Gallavotti and Jauslin, the system
has, in addition to the energy, a second independent conserved quantity. It
turns out [6] that if for given values of the two conserved quantities one orbit
is periodic, then all orbits with the same values of the conserved quantities are
periodic. Again, an elliptic curve with two involutions provides the explanation
of this phenomenon.

Giovanni Felder
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Gabriel Lamé (1795––1870)

The French scientist Gabriel Lamé was a mathematician, mechanic, engi-
neer, corresponding member of the St. Petersburg Academy of Sciences, and
member of the Paris Academy of Sciences. He lived and worked in St. Peters-
burg from 1820 to 1831. His scientific interests took shape there: they covered
a wide range of areas in mathematics and physics, from the number theory
to the theory of elasticity and mathematical physics, from purely theoretical
studies (such as the proof of Fermat’s theorem for n = 7) to very specific
applications such as building suspension bridges. He developed the general
theory of curvilinear coordinates. In coopera-
tion with the French Embassy, St. Petersburg
State University set up the Lamé Chair in
St. Petersburg, where French scientists can
visit for three months. Gabriel Lamé is one
of the 72 scientists whose names are immor-
talized on the Eiffel Tower.

Gabriel Lamé was born in Tours in west-
ern France. He received his primary educa-
tion at the Lycée Louis-le-Grand in Paris. At
16, he had to leave the Lycée and work as a
petty clerk in a law firm. One day, he got
his hands on a book by Legendre, Elements
of Geometry, and was so fascinated that he
returned to the Lyceum, successfully grad-
uated, and entered the École Polytechnique.
After that, he studied for another three years
at the École Nationale Supérieure des Mines
de Paris (also known as Mines ParisTech), where he met and befriended the
soon-to-be-famous physicist Émile Clapeyron (Benoit Paul Émile Clapeyron),
with whom he was inseparable for many years.

After the War of 1812, great efforts were made in Russia to rebuild engi-
neering structures, buildings, and roads. There was a shortage of engineers, so
teachers from the Institute of the Transport Engineers Corps, founded in 1809,
were sent off to various locations to supervise these projects. The director of the
institute, Agustin Betancourt (he was from Spain), had to bring in European
specialists as teachers. In 1819, Pierre-Dominique Bazaine, a professor at the
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institute, went to France to invite two young promising engineers, and he
chose Lamé and Clapeyron. Tempted by the promise of many advantages and

a high degree of freedom, they accepted the offer.
Lamé and Clapeyron gave lectures in higher mathe-
matics, physics, astronomy, mechanics and machine
design, and applied chemistry. They also taught
“A course in new discoveries and improvements in
the arts.” Transport engineer Andrei Delvig recalled
that Lamé “was a decent man, deeply learned, of
pleasant appearance and graceful form, who lectured
eloquently and was well versed in what he taught.”

Lamé’s scientific interests were related to the work
carried out by the engineers of the institute: the con-
struction of St. Isaac’s Cathedral, the St. Petersburg-
Moscow road, chain bridges, etc.

Lamé took part in the construction of the Alexan-
der Column. In 1829, the design for a 47.5-meter-
high triumphal column in honor of Russia’s victory
over Napoleon, submitted by Auguste de Montfer-
rand, was approved. For it to be pleasant to look
at, the shape of the column was to be made slightly
barrel-shaped. The line of curvature of the column,
i.e., the outline of the outer contour, was calculated
by Lamé. He wrote:

Taste, in accordance with the rules of art,
requires that the column should gradu-
ally diminish in diameter as it rises in
height and that this diminution should
occur along a smooth curve.

The column is made of a solid granite monolith
and is supported by its own weight. Transporting
and lifting it was also an engineering challenge. Even
today, admiring the beauty and grandeur of the
Alexander Column, one may recall Gabriel Lamé and
his “blessed choice of curvature,” using Montferrand’s
words.

Lamé and Clapeyron developed the designs for
suspension bridges over the Yauza River, the Moscow
River, and the Luga River in Yamburg. They wrote
several papers on suspension bridges and the con-
struction of rope polygons. Lamé and Clapeyron are

believed to have pioneered the ideas of graphostatics, introducing the concept
of the rope polygon as a tool of investigation. Related to problems in the
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The height of the column was divided into 12 equal parts, and the column was made
thinner at the bottom according to the pattern presented in the picture. Sketch of
Lamé, archives of the Institute of the Transport Engineers Corps.

theory of elasticity, Lamé also worked on the theory of series, in particular the
Fourier series. Under the influence of Ostrogradsky, Lamé took an interest in
the problem of heat propagation. This is evidenced by his article on the laws
of cooling and solidification of a liquid sphere, published in 1831 (Ann. Chim.
et Phys., V. 47. P. 250––256). Modern researchers believe it to have been the
first work in the theory of free boundary problems.

Lamé was also interested in railway construction. In 1830, he was sent to
the inauguration of the Liverpool and Manchester railway to learn from the
experience of its construction. He was awarded the 3rd class of the Order of
Saint Stanislaus for his report on the trip.

After eleven years of a successful career in Russia, Lamé nevertheless
decided to leave. The exact reason for his return is still unknown, but it
may have been the July Revolution in France in 1830, which made the Russian
government suspicious of the French. Lamé himself (a Saint-Simon supporter)
was uncomfortable with the political situation that developed during the reign
of Nicholas I in Russia. Lamé’s letters also help us understand the reasons for
his abrupt departure. As early as 1828, he wrote:

French families are leaving Russia. Our social circle is shrinking
drastically, and unless we fit in with Russian society, which does not
suit us and which we are not suited to, our salon will turn into a desert.
This prospect does not frighten me. I like solitude enough. But my
wife, who does not have math to work hard on, and who cannot even
spend time with her husband when he is working, is perfectly entitled
to start complaining, and that worries me.

In 1831, Lamé, a professor, a major in the Russian service, and a cor-
responding member of the St. Petersburg Academy of Sciences, resigned



52 Gabriel Lamé

(officially, due to illness) and returned to Paris. While working in Russia,
Lamé published 18 papers on mathematics, structural mechanics, theoretical
mechanics, and applied mechanics. His writings show that the main scientific
fields to which Lamé devoted his later life, such as the theory of elasticity,
the analytic theory of heat, and the theory of curvilinear coordinates, were
outlined in St. Petersburg. It was in Russia that he obtained his first results
in mathematical physics.

After his departure from Russia, Lamé remained engaged in railway con-
struction for several years. Together with Clapeyron, he drew up the first
prospective plan for the railway network in France, and after some time, they
started building the Paris-Saint-Germain railroad.

Lamé soon abandoned his engineering career, however. In 1832, he began
teaching physics at the Ecole Polytechnique, then lectured at the Sorbonne. In
the following decades, he produced major works in mathematical physics that
made him famous.

Lamé announced a proof of Fermat’s Last Theorem at the same time as
Augustin Louis Cauchy. Both had been publishing their supposed proofs in
parts until Ernst Kummer pointed out an error they both had in common:
Lamé and Cauchy assumed the unique factorization property (factoriality) for
some rings for which it did not actually hold.



Gabriel Lamé 53

A figure from Lamé’s work On stability of vaults, [5].

In 1863, Lamé was forced to abandon his work due to hearing loss. His last
years were difficult. Andrei Delvig recalled that he saw Lamé shortly before
his death, quite old, deaf, and sickly, but Lamé “spoke with pleasure of his
time in Russia and remembered it with gratitude.”

Margarita Voronina
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Mikhail Vasilyevich Ostrogradsky (1801––1862)

Mikhail Ostrogradsky1 had a significant influence on the teaching of
mathematics in the military and engineering schools of the Russian Empire.
He solved the wave propagation problem in a cylindrical basin, obtained a
formula for transforming the integral over a three-dimensional body into an
integral over its surface, introduced the notion of a conjugate operator, and

studied variational principles, including those in
non-conservative mechanical systems.

He was born on September 24 (September 12
Old Style) 1801 on his father’s estate in Poltava
province and lived in the countryside with his
parents until he was eight years old. His younger
brother Andrei recollected that from childhood
Mikhail liked to measure everything, from frogs
to the depth of a well, and used to carry around
a piece of string with him all the time for that
purpose.

In 1809, Mikhail entered Poltava Gymna-
sium. At the same time, according to the custom
of Russian nobility, Ostrogradsky was enlisted
into public service in the Poltava governor’s
office. Later, Ostrogradsky was prepared to
enter Kharkov University, though he dreamed
of a military career, and in 1817 he became a

university student. Under the influence of a keen mathematics teacher, Andrei
Pavlovsky, he began to work diligently on the textbooks by himself and in 1818
he passed the examinations for the three-year course of study. Then, on his
own petition, he left the university with a certificate to enter military service.

A year later, however, Ostrogradsky returned to the university “for improve-
ment in the sciences pertaining to applied mathematics.” He suffered in the
conflict between the rector Timofei Osipovsky, mathematician and materialist,
and the new trustee of the university Zachary Korneev, who came “to dispel the
gloom of delusion, established by the conceit of reason, and to plant Christian
virtues in the hearts.” Ostrogradsky did not attend lectures on Divine Law.

1 Spelling variants: Ostrogradskiy, Ostrogradskii, Ostrogradskii.
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The teacher wrote a complaint to the trustee who forwarded it to the minister of
education. As a result, Ostrogradsky was punished “for freethinking”: deprived
not only of a candidate degree awarded to him in April 1821 but also of the
diploma of 1818.

Soon, to get better at mathematics, Ostrogradsky asked his father to let him
go to France. In a quiet province, such trips were considered very dangerous
at the time, as Ostrogradsky’s biographers mention; relatives and neighbors
thought the young man was being sent to his death and that his father, having
given permission, had lost his mind. In autumn 1822, Ostrogradsky (on the
second attempt, because the first time he was robbed by a fellow traveler)
reached Paris where he attended several courses in mathematics with Pierre-
Simon Laplace, Joseph Fourier, and Augustin-Louis Cauchy. There is little
information about his stay in Paris. He did not keep diaries; his correspondence
was sparse and uninteresting, mainly containing requests for money. In his first
letter, he wrote that he had already toured the entire city, the city is lovely, but
its beauties are exaggerated, the carriages are very bad and usually harnessed
with two horses.

In November 1826, Ostrogradsky presented his first work, Memoir on Wave
Propagation in a Cylindrical Vessel, to the Paris Academy of Sciences. It was
printed in 1832. There are two versions of why he wrote this work. The first
one is that Ostrogradsky wandered alone along the banks of the Seine and,
being bored, watched the movement of waves which inspired him to study
wave motion. According to the second one, in 1826, he did not get money
from his father in time for some reason, and since he owed money for the
hotel and food, on the complaint of his host, he was put in the debtor’s prison
in Clichy, where he wrote the paper. Ostrogradsky sent it to Cauchy, who
presented it to the Paris Academy of Sciences with a most flattering review,
and that was why it was printed in France. Moreover, Cauchy himself bought
Ostrogradsky out of prison.2 In Paris, Mikhail Ostrogradsky became close with
Viktor Bunyakovsky.

With time, his father stopped sending him money altogether, so Ostrograd-
sky had to return to Russia at the beginning of 1828, and on foot at that — he
was robbed again on the way. The fact that he had been in France, where he
could have breathed in the revolutionary spirit, most likely explains the secret
police surveillance that he was under for some time on his return, which lasted
until it became clear that he did not have any political agenda.

He submitted several papers to the Academy of Sciences in St. Petersburg.
These works, along with his popularity in France, led to Mikhail Ostrogradsky
being elected an adjunct of the Academy of Science on December 17, 1828.

2 Cauchy, a strong supporter of Jesuits and member of the Society of St Vincent, did
as he had been taught, i.e., he ransomed a pauper from prison because Ostrogradsky had
committed no crimes, but he was poor. Cauchy helped Ostrogradsky obtain a place in the
college of Henry IV, which allowed the young scholar to improve his financial situation.
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By that time, three of his works on mathematical physics and mathematical
analysis had been published in the Academy publications. In August 1830,
Ostrogradsky was elected Extraordinary Academician and a year later Ordi-
nary Academician in Applied Mathematics, and in 1855, after the death of
Academician Pavel Fuss, he took up the chair of Ordinary Academician in
Pure Mathematics. Mikhail Ostrogradsky took an active part in the life of the
Academy: he wrote scientific papers, made reports, and reviewed the submitted
works. However, most of his time was devoted to pedagogical work, to which
he gave more than 30 years of his life.

Although Ostrogradsky remained in St. Petersburg, his influence was quite
tangible throughout Russia. In 1830, he submitted a report to the Academy
of Sciences in which he defined his goal: to promote applying theoretical
knowledge to practical needs. This position was most clearly reflected in
the higher engineering schools of St. Petersburg. Ostrogradsky taught at the
Naval Cadet Corps (from 1828), the Institute of the Transport Engineers Corps
(from 1830), the Main Pedagogical Institute (from 1832), the Main Engineering
School (from 1840), and the Main Artillery School (from 1841).

In 1829, Ostrogradsky gave his first course in mechanics in St. Petersburg.
It was a series of public lectures on celestial mechanics in which he generalized
the methods underlying Lagrange’s analytical mechanics. The course lasted
from November 1829 to March 1830. Despite the high cost of the course, 30
people attended the lectures. To put the number into context: the subscription
cost one hundred roubles, while in the 1830s wheat flour cost up to 2 roubles
per pood (16 kg), a cartload of hay — up to 8 roubles, a hundred eggs — 3.5
roubles.

The Institute of Transport Engineers bought five subscriptions to these
lectures and made them available to the institute’s assistants. One of them,
Ignaty Yanushevsky, an institute graduate in 1828, recorded these lectures.
In the report to the director of the institute on the necessity to publish the
lectures, Yanushevsky wrote [1]:

Ostrogradsky’s course by the novelty and generality of ideas it contains
would be respected not only in Russia, but also abroad, and most of all
it would be useful for our officers, who, after leaving the institute, the
best institution in terms of mathematics in Russia, often have neither
time nor means to follow new discoveries.

These lectures by Ostrogradsky were lithographed in French, see the illustra-
tion on page 57. It could be said that they have reached out to us thanks to
Yanushevsky.

Ostrogradsky gave various courses in mathematical sciences. At the Naval
Cadet Corps (later the Naval Academy), he led mathematics and descriptive
geometry classes. In addition to compulsory courses, Ostrogradsky read
Algebraic and Transcendental Analysis. The lectures were public and attracted
quite a lot of attendees — more than 60 people. The notes of these lectures
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The first page of the Ostrogradsky’s lectures on Celestial mechanics, archives of The
Institute of Transport Engineers.

were published in 1837. When he joined the Main Pedagogical Institute,
Ostrogradsky emphasized that mathematics should be taught at least thrice
weekly. The scholar compiled his own course and needed an assistant to repeat
the material there. These requirements were met. Among Ostrogradsky’s most
prominent pupils from the Pedagogical Institute were Ivan Vyshnegradsky,
Alexander Tikhomandritsky, Nikolai Budaev, Petr Roshchin, Egor Sabinin,
Daniil Delarue, and others.

One of Ostrogradsky’s favorite educational institutions was the Institute of
Transport Engineers Corps. He was invited there in 1830 to teach mechanics,
along with the famous mathematician Viktor Bunyakovsky. The letter from
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the chief manager of transport routes to the rector of the institute stated: “I
order Your Excellency to invite two adjuncts of the St. Petersburg Academy
of Sciences, Ostrogradsky and Bunyakovsky. The former will teach analytical
mechanics and astronomy, and the latter will teach differential and integral
calculus and synthetic statics” [3]. At the institute, mathematical education
was always paramount. Thus, at the session of the conference (council) of the
institute in 1834, the following resolution was adopted: “Higher mathematics
should be ranked to the first category of sciences, i.e., to the sciences every en-
gineer needs.” The provision of 1843 states rather tellingly: “Those engineers,
who do not master higher mathematics, should not be graduated as engineers,
only as architects.”

In 1859, at the meeting of the Institute’s Council, it was noted that “the
urge for analysis is learned by them (students) through the study of higher
mathematical sciences” [3]. The point here is that engineers take a responsible
approach to the assigned task, carefully analyze it, and only then make
decisions. It was the students of this institute who recorded Ostrogradsky’s
lectures on celestial mechanics in 1831 and on analytical mechanics in 1836
and 1857. The latter, the third lithographed course by Academician Mikhail
Ostrogradsky of 1857, is less well known. A copy of the course is kept only in
the scientific and technical library of The Emperor Alexander I St. Petersburg
State Transport University (formerly the Institute of the Transport Engineers
Corps). The comparison of Ostrogradsky’s lectures, published twenty years
apart, allows us to trace the dynamics of the development of analytical
mechanics.

Mikhail Ostrogradsky quickly gained exceptional authority as a scientist,
lecturer, and educator. Valerian Panaev, a graduate of the institute in
1844 and a famous engineer, left interesting memoirs about the institute, its
professors and scientists. He wrote: “Every pupil was eagerly looking forward
to the happiness and achieving the great honor of listening to lectures of
Ostrogradsky... The clarity and brevity of his expositions were amazing. He
did not torture the listener with calculations but constantly kept him in an
alert state regarding the essence of the question” [5]. Ostrogradsky stimulated
listeners’ work in mathematics and mechanics by his mere presence, the effect
of which could be seen in a large number of papers and translations produced
by students of Ostrogradsky in the 1830s––1850s “at the behest of the soul”
(i.e., of their own volition) kept in the archives [5].

Transport engineer Alexander Durnovo wrote [7]:

Hardly any other professor has been the subject of as many stories,
anecdotes, and legends as Ostrogradsky. And he was really original
and peculiar... M.V.’s presentation of his subject was excellent —
precise, clear, and even artistic. He never repeated himself, and if he
had to speak sometimes about something he had already explained
before, he always did it in a new way, with new arguments and new
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methods of making conclusions. Often, he got carried away, and always
in one direction — into the field of military history. Fascinatingly, with
great enthusiasm, he explained to his listeners the exploits of the great
generals, making chalk drawings ... and proving the strong correlation
between a commander’s talent and his mathematical mindset.

By decree of Nicholas I, an Educational Committee was established in
November 1848 to determine priorities in technical education and to oversee “its
progress in the educational institutions under the Ministry of Transport” [7].
At the time, these educational institutions included the Institute of Transport
Engineers Corps, the Civil Engineering College, and various schools. In
December 1848, Mikhail Ostrogradsky was elected a member of the committee
and was appointed the primary supervisor for mathematical science teaching in
the military schools of St. Petersburg and the educational institutions under the
Ministry of Transport. His responsibilities included considering new programs
and teaching methods, new guidelines for all academic subjects, reviewing
books and textbooks purchased for the schools, and selecting the teaching
staff. Given that Ostrogradsky taught in five St. Petersburg schools and was
associated with Moscow University and the Moscow Technical College (now
the Bauman Moscow State Technical University), his influence on teaching
mathematics can hardly be overestimated.

Indeed, Ostrogradsky’s ideas spread throughout the country. For example,
his students from the Main Pedagogical Institute, where “professor Ostrograd-
sky, using his own notes, taught higher algebra, differential, integral calculus,
and calculus of variations, analytic geometry, and the theory of mechanics with
applications” [9], received appointments at the institutions of the Ministry of
Public Education in St. Petersburg, Warsaw, Caucasus, Derpt (now Tartu in
Estonia), Belarus, Kiev, and Kazan educational districts as well as in various
gymnasiums and colleges in Siberia and the Urals. His pupils from other
educational institutions also moved all over the country.

To give a more complete picture of Mikhail Ostrogradsky’s multifaceted
activities, one might point out his work on various expert committees. For
example, in 1835, he was a member of committees on the consideration of
projects for the water supply of St. Petersburg “using passage pipes,” on the
research of firing “regulated grenades,” and on review of the experiments of
academician Boris Jacobi (Moritz Hermann von Jacobi) for the “application of
electromagnetic force to movement of ships” (and other means of transport).

Ostrogradsky’s scientific works pertain to analytical mechanics, fluid me-
chanics, the theory of elasticity, celestial mechanics, mathematical analysis,
and differential equations. In analytical mechanics, his results are related
to developing the principle of virtual displacements, variational principles of
mechanics, and other problems. The theory of heat propagation in liquids was
in fact first constructed by Ostrogradsky. A number of formulas and methods
are named after him. Mikhail Ostrogradsky was also concerned with the theory
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of magnetism as well as with problems of the calculus of variations, integration
of algebraic functions, number theory, algebra, geometry, and probability
theory.

He was friends with the great Ukrainian poet Taras Shevchenko, and there
is evidence that the latter lived in Ostrogradsky’s flat after his return from
exile. Mikhail loved the Ukrainian culture and often used Ukrainian words in
everyday speech and lectures. Not wishing to puzzle out inarticulately written
works of Lobachevsky (Gauss compared them to a thick forest, through which
one cannot find the way without examining every tree first), Ostrogradsky gave
a negative review of them. After his mother’s death, Mikhail Ostrogradsky
resumed participating in church services.

In 1834, Mikhail Ostrogradsky was elected a foreign member of the Amer-
ican Academy of Arts and Sciences, of the Turin Academy in 1841, of the
Accademia Nazionale dei Lincei in Rome in 1853, and of the Paris Academy
of Sciences as a corresponding foreign member in 1856.

Mikhail Ostrogradsky died on 1st January 1862 (20th December 1861 Old
Style) of a tumor in his back; he was buried in his ancestral manor. Aleksei
Krylov wrote:

The sturdiness of Mikhail Vasilievich’s body could be envied by Taras
Bulba himself, for even the then septic surgery and semi-shamanic
medicine needed four months to bring him to the grave.

Margarita Voronina
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Gauss–Green–Ostrogradsky divergence
theorem

The divergence theorem may be classically formulated as follows: Let A
be a bounded connected open set with (piecewise) smooth boundary ∂A in Rn,
n≥ 1, and f = (f1, f2, . . . , fn) a smooth vector field in an open set containing
the closure of A. We have∫

A
divf dHn = −

∫
∂A
f · ν dHn−1, (1)

where ν is the interior unit normal to ∂A, Hk is the k−dimensional Hausdorff
measure and divf :=

∑n
i=1Difi, Di := ∂

∂xi
. Recall that, for any positive real

number k, Hk allows us to measure any set in Rn and, for integral k’s, it agrees
with Lebesgue’s k−dimensional measure on smooth k−dimensional surfaces in
Rn.

In 1-dimension, equation (1) simply reads as
∫ b
a f dx= f(b)− f(a); in any

dimension it is equivalent, i= 1, . . . , n, to∫
A
Dif dHn = −

∫
∂A
fνi dHn−1. (2)

In particular, (1) trivially holds if A is a product of n bounded intervals.
Finally, from (1) yields

∫
ADif dx= 0 for any f with compact support in A,

hence the following duality formula∫
A
Dif φ dHn = −

∫
A
fDiφdHn (3)

whenever f , φ are smooth functions in A and φ has compact support in A.
The divergence theorem goes also under the names of Gauss, Ostrogradsky,

Green and combinations such as Gauss–Green’s or Gauss–Ostrogradsky’s
theorem. This is not surprising since special cases may be traced back to
the beginning or early periods of multidimensional calculus, and credits are
often misplaced. A reference for the history of the divergence theorem is [5].

In the 18th century both Lagrange and Laplace used the fundamental
theorem of calculus and iteration to reduce domain integrals into boundary
integrals. Special cases of (1) occur in the papers of Gauss in 1813, 1833, and
1839. In 1826 Mikhail Ostrogradsky presented a paper to the Paris Academy of
Sciences where he formulated and proved the divergence theorem in dimension
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3; similarly he did in a paper presented to the Paris Academy in 1827 and to
the St. Petersburg Academy in 1828. The last presentation was the only one
published in 1831; the other two survived only in manuscript form.

The divergence theorem also appears in a paper of Poisson presented in
1828 and published in 1829 without reference to Ostrogradsky, though there
seems to be evidence that Poisson had seen Ostrogradsky’s paper. In the same
year 1828, Green published privately a paper, that remained unnoticed for
quite some time, where he used formulas of the type∫

A
(u∆v+Du ·Dv) dV =

∫
∂A
u ∂v
∂ν

dS

in 3 dimensions, formulas nowadays named Green’s identities; instead, there is
no explicit mention of what we call Green’s theorem:∫

C
(Ldx+M dy) = ±

∫
D

(∂M
∂x
− ∂L
∂y

)
dxdy

where C is a closed curve in R2 and D the enclosed domain. Such a formula
appears, instead, without proof in a paper of Cauchy, 1846, and later with
proof in the inaugural dissertation of Riemann, 1851, in relation to Cauchy’s
theorem for functions of complex variables.

Finally, it is worth mentioning the connection between Ostrogradsky–
Gauss–Green formulas and Stokes’ formula∫

S
(curlσ) dA = ±

∫
Γ
(σ · τ) ds

where ds is the element of length of the boundary curve Γ of a surface S in
R3 and τ is the unit tangent vector to Γ, the sign depending on orientation.
A long process — involving many mathematicians, in particular Ostrogradsky,
Hankel, Volterra, Poincaré, and Elie Cartan — leads to the Stokes theorem for
differential forms: For smooth oriented (k+ 1)−surfaces S and k−differential
forms ω we have: ∫

S
dω =

∫
∂S
ω. (4)

Special instances of this are: Stokes’s theorem when ω is a 1-form in 3-space,
Green’s theorem when ω is a 1-form in 2-space and the divergence theorem
when ω is a 2-form in 3-space.

The previous theorems are both technically and conceptually relevant in
mathematical analysis, geometry, and physics. Of the enormous pertinent
literature, I will illustrate here only some aspects of the theory of sets of finite
perimeter that De Giorgi developed in a series of papers starting in early 1950,
see [2]. As general references for proofs and more, I refer the reader to [1], [3],
and [4].

Let E be a Lebesgue-measurable set in Rn, n≥ 1. According to De Giorgi, E
is a set of finite perimeter or a Caccioppoli set if the distributional derivatives



Gauss–Green–Ostrogradsky divergence theorem 63

ZOOM! ZOOM!

Points of the reduced boundary of a Caccioppoli set and the associated normal are
identified by a measure-theoretic blow-up procedure.

of its characteristic function (or indicatrix ), χE , are signed Radon measures µi.
This means, according to the duality formula (3), that

∫
χEDiψdx=−

∫
ψdµi,

for every smooth ψ with compact support, the µ′is being signed Radon
measures; equivalently, according to Riesz theorem, that the linear map
λ(φ) :=

∫
χEdiv φdHn is equibounded for |φ| ≤ 1. Writing DiχE for µi and

|DχE | for thetotal variation of the vector-valued measure DχE , that is the
measure that at every Borel set B takes the value

sup

{∫
B

div φ
∣∣∣φ ∈ C1

c (Rn, Rn), |φ(x)| ≤ 1 a.e.

}
,

the perimeter of E is then defined as the total variation |DχE | evalued at Rn

P (E) := |DχE |(Rn).

From now on, I shall denote by P the class of Caccioppoli sets. From (1)
one easily infers that bounded sets A with smooth boundaries of finite Hn−1

measure are in P, and P (A) =Hn−1(∂A) holds. For a generic E ∈P we know
from the theory of differentiation of measures that at |DχE |-a.e. x there exists
the Radon–Nikodym derivative of DχE with respect to |DχE |

dDχE
d|DχE |

= lim
r→0+

DχE(B(x, r))

|DχE(B(x, r))| =: ν(x, E). (5)

Therefore, for any φ∈C1
c (Rn, Rn) we can write∫

E
div φdHn = −

∫
φ · ν(x, E) |DχE | (6)

and even take the second integral over ∂E, since the support of |DχE | lies
in ∂E. Formula (6) sounds like the extension of the divergence theorem to
Caccioppoli sets. But it is not precisely so, because there are sets for which
P (E)<∞ but Hn−1(∂E) =∞ (see Fig. 2), and we are missing a relation
between boundary and ν(x, E). All that is specified by the celebrated rectifia-
bility theorem of De Giorgi that follows. Introduce the reduced boundary of E,
∂−E, defined as the set of points at which ν(x, E) exists and |ν(x, E)|= 1; we
have: ∂−E is (n− 1)−rectifiable, that is, apart from a Hn−1-zero set, ∂−E is
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the union of Borel sets of (n− 1)−dimensional manifolds with tangent planes
normal to ν(x, E) for Hn−1− a.e. x∈ ∂−E, moreover

DχE = ν(x, E)Hn−1|∂−E ,

and the divergence theorem holds in the form:∫
E

div φdHn = −
∫
∂−E

φ · ν(x, E) dHn−1.

Furthermore, we have ∂−E⊂ ∂µE where ∂µE is the measure-theoretic bound-
ary of E, consisting of the points which are neither of density one (rarefaction
points) for E nor of density zero for E (rarefaction points for the complement
of E), and, moreover, Hn−1(∂µE \ ∂−E) = 0. Finally, a theorem of Federer
states that E is a Caccioppoli set if and only if Hn−1(∂µE)<∞.

The class of Caccioppoli sets and the perimeter enjoy a number of functional
properties. By definition, (i) the perimeter P (E) is lower semicontinuous with
respect to the convergence in mean, that is, the convergence of the indicatrices
in L1. Moreover, one proves (ii) approximation: for every E ∈ P there is a
sequence of sets Ej ∈P that are polygonal (a set is polygonal if its boundary is
contained in finitely many hyperplanes) or bounded with smooth boundaries,
such that the E′js converge in mean to E and P (Ej)→P (E); (iii) compactness:
from a sequence of sets in P with equibounded perimeters and supports we
may choose a subsequence that converges in mean to a set in P.

Therefore, we may think of Caccioppoli sets as of the limits in mean of sets
with smooth boundaries and of the perimeter as of Lebesgue’s extension of the

An approximation to a Caccioppoli set that has everywhere dense boundary; an
example of such a set is given by the union of circles with centers at all rational
points in the unit square.
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classical measure of the boundary:

P (E) := inf
{

lim inf
j→∞

P (Ej)
}

,

where the infimum is taken among sequences of sets Ej with smooth boundaries
converging to E in mean. This distinguishes the class of Caccioppoli sets as
the natural class in which to study variational problems involving the area
of codimension one surfaces. One such problem is that of finding a set of
minimum perimeter among sets of prescribed full measure, which has a simple
positive answer in the class P, and then characterize the optimal sets as
hyperspheres, which is the isoperimetric property of the hypersphere in its
dual form: Denote by C a hypersphere in Rn; then P (E)≥P (C) for all E ∈P
with Hn(E) =Hn(C), moreover equality holds if and only if E=C.

A rough presentation of De Giorgi’s proof of the isoperimetric property of
the hypersphere follows.

1. Steiner’s symmetrization procedure, which classically preserves the full
measure and decreases the boundary measure of smooth sets, extends to
Caccioppoli sets.

Given a bounded set E ∈P and a direction η in R, let H be (n− 1)−plane
orthogonal to η. I recall that Steiner symmetrization of E in the direction η
is the set Es,η enjoying the property that its intersection with (almost) any
straight line L orthogonal to H is a segment, symmetric about H, the length
of which equals the 1−dimensional measure of L ∩H. The following holds:
Hn(Es,η) =Hn(E) and P (Es,η)≤ P (E); moreover, if equality holds, then E
is normal with respect to H or in the direction η, that is, the intersections of
straight lines orthogonal to H with E are segments.

2. On the account of the approximation theorem, to prove that P (B)≥P (C)
for all B ∈P withHn(B) =Hn(C) it suffices to prove it in case B is a polygonal
set Π. If so, Π is enclosed in a large ball B(0, R) and, by compactness and
semicontinuity, the perimeter has a minimizer in the class E of sets B ∈P with
Hn(B) =Hn(Π) and supports in B(0, R). Let E be one of such minimizers.
Steiner symmetrized Es,η is also a minimizer in the same class E , hence E is
normal in the direction η. Since this holds for all directions and all minimizers,
we conclude that every minimizer is normal with respect to any direction or
every minimizer is convex.

3. Let E be a bounded and convex set and let H be an (n− 1)−plane passing
throught the barycenter of E. After a rotation we may assume that H is
the hyperplane xn = 0 and we may represent E, by setting (y, xn) instead of
(x1, . . . , xn), as the set f1(y)≤xn≤ f2(y), y ∈D, where D is a convex domain
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in Rn−1 and f1, f2 are Lipschitz functions. One also sees that

P (E)−P (Es,xn) =

∫
D

√
1 + |Df1|2 dHn−1 +

∫
D

√
1 + |Df2|2 dHn−1

− 2

∫
D

√
1 +

∣∣∣D f2− f1

2

∣∣∣2dHn−1.

According to Minkowski’s inequality we then infer P (E)− P (Es,xn)≥ 0 and
equality holds if and only if D(f1 − f2) = 0 in D. This yields that E is
symmetric in any direction, hence E is a hypersphere.

In particular, we have proved that the sphere is the unique solution to the
problem of finding a set of smallest perimeter among sets of given full measure
with smooth boundaries.

In the classical context, De Giorgi’s proof may be read as: If the set E
is optimal, then E is a sphere. This essentially amounts to what Steiner did
and believed to be a proof of the isoperimetric property of the sphere. In the
measure theoretic context the existence of a solution is proved, in Steiner’s
classical context it is assumed.

As we know nowadays, this makes Steiner’s proof not complete: before
accusing somebody of murder, having excluded everybody else, it is better to
be sure that we are in a case of murder. By assuming the existence of certain
objects, one may in fact prove all kind of nonsense.

According to Perron, assuming that there is a largest positive integer,
n, we may prove that n must be 1; in fact if n were larger than 1, then
n2>n, contradiction. Steiner never accepted that his proof of the isoperimetric
property was incomplete, although Dirichlet pointed out the gap to him. The
irony of history is that in the nineteenth century distinguished mathematicians
such as Gauss, Dirichlet, Riemann, Neumann, made a similar error, see [6].

Mariano Giaquinta
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[4] Giaquinta, M., Modica, G. and Souček, J. (1998) Cartesian Currents in the

Calculus of Variations, I. Ergebnisse der Mathematik und ihrer Grenzgebiete,
Springer.

[5] Katz, V.J. (1979). The History of Stokes’ Theorem, Mathematics Magazine, 52,
pp. 146––156.

[6] Monna, A.F. (1975). Dirichlet’s principle. A mathematical comedy of errors and
its influence on the developments of analysis. Utrecht: Scheltema and Holkema.



Viktor Yakovlevich Bunyakovsky (1804––1889)

Viktor Bunyakovsky1was a Russian mathematician, demographer, member
of the Academy of Sciences (1828), and its vice-president 1864––1889. He made
significant contributions to the development of probability theory and statis-
tics, and actively participated in the establishment and subsequent reforms of
mathematical education in the Russian Empire.

He was born in the town of Bar, Podolsk Governorate, into the family of a
lieutenant colonel of cavalry, who died in Finland during the Russian-Swedish
war of 1808––1809. Having lost his father at an
early age, Bunyakovsky was brought up in the
family of General Count Alexander Tormasov,
a participant in the Patriotic War of 1812.

In 1820, together with Tormasov’s son
Alexander, Bunyakovsky went abroad to study.
He studied in Coburg in Bavaria, where he took
private lessons, then at the Academy in Lau-
sanne, before moving to Paris to study at the
Collège de France and the Faculty of Sciences
of the Sorbonne (1824––1825). He attended lec-
tures by Augustin-Louis Cauchy, Pierre-Simon
Laplace, Joseph Fourier, Siméon Denis Pois-
son, Adrien-Marie Legendre, and André-Marie
Ampère. In Paris, he was awarded bachelor’s
and licentiate degrees (1824), and in 1825, he
received a doctorate in mathematics for his work on analytical dynamics and
the theory of heat. He became friends there with Mikhail Ostrogradsky.

After returning to Russia, Bunyakovsky taught at the First Cadet Corps
(1826––1831) and St. Petersburg University (1846––1859). He was a professor
at the Mining Institute and the Institute of Transport Engineers Corps. In
1830, he became an Extraordinary Academician, and in 1864, he was elected
vice-president of the Academy of Sciences and held this position until his death.

Bunyakovsky investigated particular issues of integration and elementary
number theory and wrote a historical review of various “proofs” of the parallel
postulate. He did not accept Lobachevsky’s theory, although he spoke of it

1 Spelling variants: Bunyakovskii, Bunyakovskiy.
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with respect. Bunyakovsky’s main achievements were in probability theory,
statistics, and demography.

Having reworked the lectures of Laplace that he had listened to in Paris,
Bunyakovsky wrote the best textbook of its time, Foundations of Mathematical
Probability Theory (1846).

Bunyakovsky mainly was concerned with applied issues of demography
and insurance; however, he did influence Pafnuty Chebyshev in the field of
probability theory. The mathematical foundations of insurance in Russia had
already been laid by Leonhard Euler and Nicolas Fuss, whom Bunyakovsky
refers to in his papers. From 1858, Bunyakovsky was the government’s chief
expert on statistics and insurance and helped organize a retired insurance
saving association in the navy, an organization to which members contributed
money (usually 6% of their salary) and from which an annual pension was paid
to a member or (in case of his death) his family members after a certain period
of participation or time in service.

The rational planning of the old-age insurance saving association required
an understanding of how much and what payments were to be made, on
average: Bunyakovsky investigated relevant mathematical models. In 1869, he
published a series of four notes on the subject. In Notes on a Question About
Life Pensions, read at the meeting of the Physics and Mathematics Division
of the Academy of Sciences on December 10, 1868, he gave a mathematical
solution to the problem of how to “determine the age X, at the reaching of
which a person becomes entitled to a pension, conditioning that age so that the
annually increasing total of pensioners would not exceed some given limit with
time.” Mathematician Andrei Markov participated in 1890 in the calculations
for the association, for which he was issued a commendation from the Ministry
of Finance. Incidentally, Markov, a gymnasium student, wrote a letter to
Bunyakovsky. The latter found some mistakes in Markov’s research but did
praise the future academician.

The mortality records of the Orthodox population were practically the only
source of demographic data available at the time (there were no censuses);
it was from these that Bunyakovsky had to calculate the age distribution of
Russia’s population. Having studied the issue, Bunyakovsky concluded:

Our extremely unfavorable situation regarding mortality laws in com-
parison with other European nations, which is still accepted as an
undoubted fact, in my opinion, is simply a scientific misunderstanding,
which arose and was retained solely because those who addressed this
issue did not go deep enough into its essence.

The old mortality table method exaggerated mortality for a country with an
increasing population. Considering it erroneous, Bunyakovsky proposed a new
method of compiling mortality tables. The difference between his method and
the previous one was that the numbers of deaths by age were compared with
the number of births of the generation to which the deaths of that age belonged.
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The équerre schema.

Bunyakovsky calculated, among other things, the probable size of the
Russian army. In those days, such a value could only be estimated using
statistics.

He also gained fame as an inventor. In 1855, he invented new models of
pantographs (devices that make scaled-down copies of drawings and maps),
planimeters (devices that measure areas), and the so-called équerre, which
proved to be more accurate and cheaper than their existing equivalents. The
summing équerre was designed to use the method of least squares: by moving
rulers and clamping screws, one could obtain

√
x2 + y2 from the numbers x, y,

which made it possible to calculate the sum of the squares of the given numbers
quickly.

In 1867, building on the working principle of the traditional Russian
abacus, Bunyakovsky invented “self-count,” a device for repeatedly adding and
subtracting large numbers. Self-counts were to calculate the average monthly
or annual values of meteorological elements: for example, instead of dividing
the sum by 30, each summand was counted with the factor 1/30. The original
self-counts have survived only in The Polytechnic Museum and The National
Museum of the Republic of Karelia.

In 1889, Viktor Bunyakovsky, together with Pafnuty Chebyshev and Vasily
Imshenetsky, got Sofia Kovalevskaya elected to the Academy of Sciences. Thus,
she became the first woman among the corresponding members of the Academy
of Sciences.

Cauchy–Bunyakovsky–Schwarz inequality. The inequality(
n∑
i=1

uivi

)2

≤
(

n∑
i=1

u2
i

)(
n∑
i=1

v2
i

)



70 Viktor Yakovlevich Bunyakovsky

The cover page of Bunyakovsky’s paper and the page where the inequality for integrals
was used.

for sums appeared in the work of Cauchy in 1821, then Bunyakovsky proved
(as an intermediate step, see the illustration above) the inequality∣∣∣∣∫

R
f(x)g(x)dx

∣∣∣∣2 ≤ ∫
R
|f(x)|2dx ·

∫
R
|g(x)|2dx

for integrals in his 1859 work. Bunyakovsky’s work was published in French
in the Transactions of the Saint Petersburg Academy of Sciences. Hermann
Schwarz obtained the same inequality 30 years later, in 1888. In the
USSR/Russia, this inequality is known as the Cauchy–Bunyakovsky inequality.

Nikita Kalinin
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Chebyshev’s era





Pafnuty Lvovich Chebyshev (1821––1894)

Pafnuty Lvovich Chebyshev1 is the founder of the 19th-century Russian
mathematical school in Saint Petersburg. He contributed to number theory,
probability, approximation theory, analysis, geometry, algebra, differential
equations, abelian integrals, cartography, and
astronomy. His results on the distribution of
prime numbers stand as the basis of analytic
number theory. His work on probability includes
significant extensions of the law of large numbers
and of the central limit theorem, and makes
him one of the principal founders of modern
probability theory. He was the first mathemati-
cian to recognize the importance of a general
theory of orthogonal polynomials. We owe him
fundamental results on the approximation of a
real analytic function by polynomials. He had
a very strong interest in mechanical engineering
and conceived several machines and devices. His
work highlights the importance of mathematics in the applied sciences, and
conversely, it shows how practical problems may motivate theoretical research.

Pafnuty Chebyshev was born on May 16, 1821, in the village of Okatovo,
about 80 km south of Moscow, district of Borovsk,2 Kaluga province. The
village was a part of the property of his father, a former army officer of noble
descent. Chebyshev received his education at home until age 11, first from
family members and then private tutors. In 1837, he enrolled in the faculty
of physics and mathematics of Moscow University. One year later, he wrote a
paper titled Calculation of the roots of equations in which he gave a method
of approximation for the roots of an algebraic equation of degree n. This was
the first of a series of works he published in approximation theory, a topic in
which he became engaged for the rest of his life.

At Moscow University, Chebyshev’s talents attracted the attention of
N. D. Brashman, his teacher of Mechanics who became his mentor and for
whom Chebyshev always retained a profound respect, both as a mathematician

1 Pronounced as Chebyshov, with the stress on “o”.
2 Now Zhukovsky district.
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and a person. He graduated in 1841 with a candidate dissertation titled On
the numerical solution of algebraic equations of higher degree. In 1843, he
published the first of a series of 17 papers that appeared in Liouville’s journal
(Journal de mathématiques pures et appliquées). This paper, entitled Note
on a class of multiple definite integrals, attracted the attention of Eugène
Charles Catalan even before its publication, since the latter wrote a sequel
to Chebyshev’s results which was published in the same issue of the journal.
In 1844, Chebyshev published a paper in Crelle’s journal (Journal für die
reine und angewandte Mathematik), titled Note on the convergence of Taylor’s
series, in which he pointed out a gap in a statement by A.-L. Cauchy involving
the integration of a series of functions. In 1845, he defended a Magister
thesis, titled An attempt for an elementary analysis of the theory of probability,
opening up a series of works on a topic in which he became a world leader.

In 1847, Chebyshev settled in Saint Petersburg where he started to teach
at the Imperial University. In 1847, he defended a doctoral dissertation on
number theory, titled The theory of congruences, concerning a topic in which
he became interested after reading Leonhard Euler’s works. According to B.
N. Delone [3], this dissertation contained the first non-trivial results on the
distribution of prime numbers since the works of Euclid, and their importance
is only comparable to those obtained by Bernhard Riemann on this topic. Part
of this thesis was published in 1852 in Liouville’s journal under the title On
the function which determines the totality of prime numbers smaller than a
certain limit. It contains new results on the growth and the limiting behavior
of the function φ(x) of the number of primes less than x for large x, incidentally
invalidating several statements made by Legendre and giving alternative results
and proofs. By then, Chebyshev had become a highly respected mathematician
in Europe, and his prestige and influence increased.

Motivated by the steam engine constructed by James Watt in 1763, Cheby-
shev published a paper titled On the theory of mechanisms, known under the
name of parallelograms in 1854. This was the first of around ten papers
he wrote on the theory of mechanical linkages. Roughly speaking, Watt
produced a mechanism that, from a combination of circular motions, produces
a rectilinear one. Chebyshev was interested in this question because it involves
the conception of mechanical devices and approximation theory. He also
wanted to obtain an exact solution to the problem of transforming a rectilinear
motion into a circular one, not only approximations. The problem was solved
in 1871 by Yom Tov Lipman Lipkin, one of his young collaborators, and
two years later it was given another solution by the French engineer Charles-
Nicolas Peaucellier [6]. In his work on this topic, Chebyshev inaugurated the
general study of transforming one motion into another one through mechanical
linkages. By the end of the 19th century, interest in the theory of linkages had
declined. Still, it became very active again in the 1980s, under the impulse
of William Thurston: see the survey by Alexei Sossinsky [8]. Among the
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Chebyshev’s plantigrade-machine.

devices that Chebyshev invented are mechanical linkages for a wheelchair and
for a rowing boat. Incidentally, it is in his 1854 paper on linkages that the
Chebyshev polynomials appeared for the first time.

Chebyshev was fluent in French, which was not unusual among 19th-century
educated Russians. In the early 1840s, he started building contacts with
renowned mathematicians in Western Europe and he established close friend-
ships with Charles Hermite, Joseph Bertrand, Catalan, Leopold Kronecker,
Edouard Lucas, and many others. Alexander Vasiliev [9] and Vladimir Possé
[7] mention that he spent almost all his summers abroad, mainly in Paris.
His Collected Works contain a report on a 3-month stay he made in France
in 1852, in which he records that he conversed with Irénée-Jules Bienaymé,
Cauchy, Liouville, Hermite, Victor Amédée Lebesgue, Alphonse de Polignac,
Joseph Alfred Serret, and other mathematicians. The meetings took place in
the evening, since during the day he was busy visiting industrial plants. In his
report, he notes his observations on the windmills in Lille, on the metallurgical
plant in Hayange, on the paper mills in Coronne, on the foundry and the
cannon factory in Ruelle, on a turbine in a windmill in Saint-Maur, on a
water mill in Meaux, on an arms factory in Châtelleraut, etc. From Paris he
made a small trip to London, where he conversed with Arthur Cayley and J.
J. Sylvester, and visited the Royal Polytechnic Institute, where he examined
models of various machines. He also went to Brussels, where he visited the
museum of engines, and on his way back to Russia he made a stop in Berlin
and had several discussions with Peter Gustav Lejeune Dirichlet.
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In 1853, Chebyshev was elected adjunct at the Saint Petersburg Academy
of Sciences. His first task was to assist V. Ya. Bunyakovsky, who noticed

A unit of tissue dressing the half–
sphere. From Chebyshev’s unfinished
article on cutting garments, see [4] for
details.

his strong capacity for work, in publish-
ing an edition of Euler’s works on number
theory. He became an ordinary academi-
cian in 1859.

From childhood, Chebyshev was
handicapped by a withered leg; he walked
with the help of a stick and he was ex-
cluded from most of the children’s games.
As we have noted, he was fascinated by
mechanical devices, and kept this pas-
sion until the end of his life. One of
his first constructions was a computing
machine, which he built with his own
hands. His invented devices are displayed
in the Conservatoire National des Arts et
métiers in Paris, at Saint Petersburg Uni-
versity, the Saint Petersburg Academy of
Sciences, and elsewhere.

Chebyshev was a member of most European Academies of Sciences. In 1874,
he was elected a foreign member (the first Russian after Peter the Great) of the
Paris Académie des Sciences. He became a member of the Association française
pour l’avancement des sciences, a learned society created in 1872, aiming to
promote relations between the various sciences. Chebyshev participated in four
of its annual meetings: Lyon (1873), Clermont-Ferrand (1876), Paris (1878),
and La Rochelle (1882), each time presenting several works on various topics
(geographical maps, the cutting of garments, his calculating machine, etc.).
Abstracts of his talks are reproduced in his Collected Works.

In 1882, Chebyshev resigned from his professorship and started dedicating
all his time to research. One day a week, his house was open to young scientists
who wished to discuss their results with him or seek advice. In the summer of
1893, he made his last extended visit to Paris. He died on November 26, 1894.
His tomb can be visited in the basement of the Church of the Transfiguration in
the village of Spas-Prognanye, 10 km from the science city of Obninsk. In the
nearby village of Mashkovo, there is a school named after Chebyshev, which
hosts a museum containing a collection of original photographs and objects
that belonged to him, including an arithmetic machine that he constructed.
There are several biographies of Chebyshev, e.g., [7, 9, 10]. For a guide to his
life and work, see [2]; on his contacts with Western European scientists, see [1].

Athanase Papadopoulos
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On Chebyshev’s work on geography

Pafnuty Lvovich Chebyshev, like his most famous predecessor, Leonhard
Euler, was involved in a great variety of research topics, including number
theory, probability, the theory of elliptic integrals, differential geometry, ap-
proximation theory, mechanics, and others. He was always driven by the desire
to find effective solutions with practical algorithms and good approximations,
in case a precise solution could not be found. His biographers report that while
he spent a significant amount of his time studying the works of mathematicians
from the past like Euler, Lagrange, Gauss and Abel, he avoided reading the
works of his contemporaries, considering that this would be an obstacle to
having original ideas.

The mathematical theory of cartography, i.e., the art of map drawing, is
an applied field that raises interesting theoretical questions in geometry and
analysis, and it is not surprising that this topic became one of Chebyshev’s
domains of interest. It was also an ideal ground for applying his ideas in
approximation and interpolation theories.

In 1856, Chebyshev wrote two papers on cartography carrying the title
Sur la construction des cartes géographiques, the same title as two memoirs
that Lagrange published 57 years before [8]. It is probable that Chebyshev
became interested in this field by reading Lagrange’s memoirs, but also those
of Euler. Indeed, the latter was intensively involved in geography; at the
Saint Petersburg Academy of Sciences he had the official charge of geographer,
and he published several works in cartography. The reader might refer to [1]
for a commented edition of the works of Euler and Lagrange on geography.
Chebyshev was part of an editorial committee, headed by Bunyakovsky, for
an edition of Euler’s works on number theory, and there is no doubt that he
skimmed Euler’s works on various topics, including cartography.

The problem of drawing geographical maps is that of mapping on a
Euclidean plane, and with minimal distorsion, a subset of a curved sur-
face, which is usually a sphere representing the Earth. It was known by
mathematicians since Greek antiquity that it is not possible to require that
such a mapping preserves distances up to a scale. In other words, such a
mapping has necessarily a “distortion.” The main question was that of finding
geographical maps whose distortion is minimal in a sense that had to be made
precise. It is not surprising that Chebyshev, who was working on practical
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and theoretical problems involving approximation and optimization techniques,
became interested in this topic.

Chebyshev based his investigations of geographical maps on Lagrange’s
work, presented in the two memoirs [8], itself is an extension of the works
of Euler and Lambert on cartography [8, p. 641]. The setting is that of a
general conformal, that is, angle-preserving, map from a subset of the sphere
into the plane. In fact, Lagrange worked in the setting of a spheroid, that
is, a figure obtained by rotating an ellipse along an axis; it was known at
this epoch that the Earth was rather spheroidal than spherical. Chebyshev
considered the simpler case where the Earth is spherical. He used a formula
established by Lagrange for a quantity he called the magnification ratio. This
is the ratio between a length element at a point on the sphere and its image
by the conformal map.

The coordinates of a point on the sphere are denoted by (s, t) where s is the
co-latitude of a point, that is, its distance to the North pole, and t its longitude,
that is, the angle made by the plane containing the meridian passing through
this point with the plane containing a fixed meridian chosen as an origin for
longitudes. The fact that the map is conformal implies that the magnification
ratio, as the complex derivative of the map, does not depend on the direction.
In a plane containing a meridian, Lagrange took rectangular coordinates (p, q)
with p= cos s and q = sin s, which makes the length element on the sphere
equal to

√
ds2 + q2dt2. The Euclidean plane is equipped with coordinates

(x, y) and the length element equals
√
dx2 + dy2. The magnification ratio, in

this notation, is

m =

√
dx2 + dy2√
ds2 + q2dt2

.

The problem is then to determine (x, y) in terms of s and t in such a way
that the deviation of the magnification ratio m from its integral over the
region considered is minimal. The problem becomes a problem in the calculus
of variations, a field where Lagrange was a pioneer. Using a new variable
satisfying du= ds/q and passing to complex notation, Lagrange reached the
formula

m =

√
f ′(u+ it)F ′(u− it)

2
eu+e−u

where f ′ and F ′ are arbitrary functions. This is the formula that Chebyshev
used, and his main observation was that this gives

logm = 1
2

log[f ′(u+ it)] + 1
2

log[F ′(u− it)]− log 2
eu + e−u

,

and that the sum U of the first two terms is a real harmonic function, that is,
it satisfies Laplace’s equation ∂2U

∂u2
+ ∂2U

∂t2
= 0.

From this, he reduced the search for the best map to finding a solution to
the Laplace equation, defined on a region with given boundary values. His
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The map of the USSR made using Chebyshev’s projection method.

main theorem can be stated as follows: For a given country, or a region of
the sphere, the projection for which the magnification ratio has the smallest
variation is one for which the magnification ratio on the boundary of the region
to be represented is constant.

Chebyshev also indicated a method for the computation of the magnification
ratio, whose effectiveness depends on the complication of the boundary of the
region to be mapped.

Regarding Chebyshev’s interest in geography, one may also mention his
“rule for the approximate evaluation of distances on the surface of the earth”,
contained in Vol. II, p. 736 of his Collected Works [2].

Chebyshev did not write the details of the proof of his theorem. The
theorem was considered as being difficult, and, several years later, various
mathematicians wrote proofs of it. In 1911, Gaston Darboux published a
paper carrying the same title as Chebyshev’s, giving details of the proof,
based on Chebyshev’s idea of using the Laplace equation, and applying Green’s
formula [5].

In 1894, D.A. Gravé found a proof of Chebyshev’s theorem and presented
it at the annual meeting of the Association française pour l’avancement des
sciences, a French learned society of which Chebyshev had been a member. In
1911, he published a paper [7], titled Sur un théorème de Tchébychef généralisé,
in which he gave a proof of a slightly more general result. In fact, Gravé was
a student of Chebyshev, and under his influence, he had already published
in 1869 a paper on cartography carrying again the title Sur la construction
des cartes géographiques, in which he studied a related problem, that of area-
preserving mappings from the sphere to the plane [6].
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A modern proof of Chebyshev’s theorem, also based on his ideas, was given
about a century after Chebyshev found it, by John Milnor [9], who also pointed
out further developments and highlighted the importance of the case where the
region on the sphere which is mapped is geodesically convex. Milnor writes in
his paper: “This result has been available for more than a hundred years, but
to my knowledge, it has never been used by actual map makers.”

Chebyshev’s second paper on geography, which he read at a ceremonial
meeting of the Imperial University of Saint Petersburg on February 8, 1856,
was also the occasion for him to express his view on the concord between theory
and practice in mathematics. He wrote there:

Since the oldest antiquity, Mathematical Sciences have been the sub-
ject of particular attention. They still attract more interest because
they influence the arts and industry today. The reconciliation between
theory and practice brings the most beneficial results. Practice is
not the only side benefiting from these relations: conversely, sciences
develop under the influence of practice. The latter discovers new
objects of study for the former, and brings new points of view for
subjects that are known since long times.
Despite the high degree of development that Mathematical Sciences
attained, thanks to the works of the greatest geometers of the last three
centuries, practice clearly shows that they are incomplete in many
ways. Indeed, it addresses to Science questions that are essentially
new, thus leading the search for methods which were unknown till
then. If a theory gains a significant profit from new applications from
an old method or new developments, it will gain even more from the
discovery of new methods. Thus, science finds in practice a safe guide.

Let us conclude this article with another quote from Chebyshev ([11,
p. 45––46]):

Mathematics already traversed two epochs, the one where the problems
were set by the gods (for instance, the problem of the duplication of
the cube) and the other one where the semi-gods, like Fermat, Pascal,
and others established them; today we entered the third period, where
the questions to be solved are raised by the needs of humanity.

Athanase Papadopoulos
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Alexander Nikolaevich Korkin (1837––1908)

Alexander Korkin graduated from gymnasium (i.e., grammar school) and
university, even though his father was a serf on a taxable estate.1 Korkin,
together with Egor Zolotarev, classified the maximum values of minima of
quadratic forms in four and five variables. They were also the first to explicitly
construct the quadratic form corresponding to the E8 lattice.

The eldest of Pafnuty Chebyshev’s pupils, Korkin was born in the village of
Zhidovinovo, Totemsky District, Vologda Governorate, into a family of state
serf peasant. Serfs didn’t have the right to study
at schools (including specialized high schools
preparing students for a university track), much
less at universities. His father, a literate and
intelligent man, was determined to give his son
an education at any cost. He took his son
to Vologda, where he persuaded a gymnasium
teacher to take Alexander into the family to
prepare him for studies at the gymnasium.

In the family of his first teacher, Ivanitsky
(incidentally, a pupil of Viktor Bunyakovsky),
Korkin learned German and French, and was
keen on reading, natural science, and mathemat-
ics. Then, his father succeeded in getting the
Vologda Treasury Chamber to exclude his son
from the taxable estate so he could study at a gymnasium. For his son’s sake,
he donated 200 rubles to the gymnasium church, which was a lot of money
at that time. Unfortunately, Korkin’s father did not have long to rejoice in
his son’s successes: Korkin Sr died in 1849, leaving his family with almost no
money.

In 1853, Alexander Korkin graduated from the gymnasium with honors
and entered St. Petersburg University the following year. There, he attended
lectures of Osip Somov, Viktor Bunyakovsky, and Pafnuty Chebyshev. The

1 During the 19th century in Imperial Russia, there was a distinction between taxable
and non-taxable estates. The Code of the Law of the Russian Empire of 1832 defined four
main types of estates: dvoryans (nobility), clergy, urban dwellers and peasants. The estates
of urban dwellers and peasants were taxable by the State, and serfs working on these had
more freedom but still relatively few rights. The serfs who worked on non-taxable estates
belonging to nobility and clergy had less freedom and fewer rights.
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faculty awarded him a gold medal for his first scientific paper on conditional
extrema, The Theory of Maxima and Minima of Functions (1856). Upon
leaving university in 1858, Alexander Korkin had to apply again to the Treasury
Chamber with a request to be excluded from the taxed estate, was approved
as having a candidate’s degree,2 and started teaching mathematics in the First
Cadet Corps (from 1858 till 1861).

In 1860, he defended a master’s thesis On the Definition of Arbitrary
Functions in Integrals of Partial Differential Equations (for lack of money,
he could not print it, so he wrote a small number of copies by hand in
lithographic ink) and moved to St. Petersburg University, where he worked
for nearly 50 years. In 1861, following a request by Chebyshev, he was
elected adjunct at the university in the department of pure mathematics. In
1862––1864, Korkin was sent to Berlin and Paris to prepare for a professorship,
where he attended lectures by Michel Chasles, Gabriel Lamé, Joseph Liouville,
Joseph Bertrand, Karl Weierstrass, Leopold Kronecker, and Ernst Kummer.
Alexander Korkin defended his doctoral thesis, entitled On systems of first
order partial differential equations and some questions of mechanics, in 1868
(the reviewers were Somov and Chebyshev). He was then elected, first, as an
extraordinary professor in the Department of Pure Mathematics, then as a full
professor in 1873, and then as an honored professor in 1886.

After the deaths of Somov, Bunyakovsky, and Chebyshev, Korkin took over
the instruction of the most important courses. Korkin was credited with setting
up a course at the university called The Integration of Differential Equations
and Calculus of Variations, which he developed after Chebyshev left in 1882.
In this course he introduced a considerable section on ordinary differential
equations and their systems, including his own way of solving them, and on
partial derivative equations. At his home, Korkin gave a course on partial
differential equations for selected students. At the university, such a specialized
course was introduced to the curriculum only later by Vladimir Steklov.

For more than 30 years, Korkin also worked at the Naval Academy. Aleksey
Krylov, who attended a course of his lectures on differential and integral
calculus at the Academy in 1888 and also specialized courses on particular
branches of mathematical physics in 1891, wrote that “there were many courses
on differential and integral calculus both in Russian and in foreign languages,
but Korkin did not adhere to any of them and did not read so much as dictated
to us his entirely original course, which is distinguished by the particular
precision of definitions, brevity, naturalness, and elegance of derivations of
all formulas <...> which is necessary for technicians who study mathematics
as a tool for practical applications” [5, p. 109].

2 The Candidate’s degree was the first academic degree in the Russian Empire between
1835 and 1884. It was awarded to students who graduated from university with honors. The
following degree was a Master’s degree.
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In the whole of the second and partially the third chapters of his monograph
On Some Differential Equations of Mathematical Physics with Applications
in Technical Matters (1913), Krylov based the material directly on Korkin’s
lectures. Leaving his position at the Naval Academy, Korkin recommended
Krylov as the most capable student to take his place.

The main topics of Korkin’s research were the integration of differential
equations and their systems (the subject of his master’s and doctoral theses),
partial differential equations and their applications to mechanics, and number
theory. In number theory, Korkin worked on the theory of quadratic forms and
congruence theory. Together with Zolotarev, he managed to solve the difficult
problem of the exact evaluation of the minima of positive quadratic forms in
four and five variables.

In Sur les formes quadratiques, Korkin and Zolotarev were the first to
consider the E8 lattice while constructing an integral quadratic form associated
with it.

Generating vectors for the E8 lattice.

Many prominent Russian mathematicians thought of themselves as Ko-
rkin’s students; a number of them, including Egor Zolotarev, Aleksey Krylov,
Alexander Lyapunov, Andrei Markov, Sergey von Glazenap, Dmitry Grave,
Ivan Ivanov, and Nikolai Günther, considered themselves Korkin’s immediate
pupils. Korkin had an excellent command of French, which he used to write
many of his works and letters to foreign mathematicians; he also had a good
knowledge of Latin. He was fond of astronomical calculations; in particular,
he made some corrections to a textbook on spherical astronomy by Aleksey
Savich.

Every evening, St. Petersburg students and professors would gather in
Alexander Korkin’s flat. In his autobiographical notes, Dmitry Grave recalled
these evenings with great warmth:

Sitting on the sofa, Korkin held interesting conversations, as he was
an intelligent and educated man. It was particularly interesting when
he was talking about mathematics. I must admit that both my theses
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derived from these conversations, although Chebyshev and Markov
also played a major role in my doctoral thesis.

Alexander Korkin is buried in the Smolensk Orthodox Cemetery.

Galina Sinkevich
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Julian Karol Sochocki (1842––1927)

Julian Sochocki1 is known to all mathematics students for his theorem on
the behavior of an analytic function near its essential singularity. He was
a professor at St. Petersburg University and a founding member and later
chairman of the St. Petersburg Mathematical Society.

Julian Karol (Julian Vasilievich) Sochocki was born in Warsaw (the capital
of the Kingdom of Poland, a part of the Russian Empire at the time) on
January 24, 1842, in the family of a low-ranking official. Having finished school
with honors, 18-year-old Sochocki went to St. Petersburg and on September 15,
1860, was enrolled in the Physics and Math-
ematics Department of St. Petersburg Uni-
versity. St. Petersburg was being shaken
by student unrest. The university was
closed from 10 April to 10 October 1861,
and rallies and protests did not cease. On
12 October Sochocki was imprisoned in the
Petropavloskaya fortress for taking part in
student riots and five days later transferred
to Kronstadt, where he was detained until 6
December. After that, he left for his home-
land, having thus completed only one and a
half semesters.

In Warsaw, Sochocki took part in the
January Uprising of 1863––1864, helping to
transport weapons in a hay cart. After the
uprising was suppressed in 1864 Sochocki re-
turned to St. Petersburg but was not allowed
to be reinstated to the university. He studied on his own. In 1865, he took
his master’s exams in mathematics and mechanics and presented his thesis (an
equivalent of a modern graduation paper) on elliptic functions, for which he
received his degree of candidate in mathematics in 1866.

In 1868 Sochocki presented his master’s thesis (an equivalent of a modern
Ph.D. thesis) Theory of integral residues with some applications containing his
famous theorem on the behavior of a function near an essential singularity. The

1 Spelling variant: Sokhotski.
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theorem is now called the Casorati–Sochocki–Weierstrass theorem because it
was also independently published by the Italian mathematician Felice Casorati
(1868) and the German mathematician Karl Weierstrass (1876). As Sochocki
noted in the preface, his research style “does not shy away from the simplicity
with which all general cases can be obtained,” which distinguished him from
his contemporary researchers.

In 1869, Sochocki started working in the Institute of Civil Engineers, first
as a privatdozent, then as an associate professor. In 1873 he defended his
doctoral thesis On definite integrals and functions used in series expansion,
which contains the so-called Sochocki formulae (later called the Sochocki–
Plemelj formulae), still used in quantum physics today. While being a professor
at the Institute of Civil Engineers, Sochocki also lectured at St. Petersburg
University, where he became a professor in 1882 and professor emeritus in
1893.

Sochocki’s Higher Algebra (1882––1888) and The Theory of Definite Integrals
(1901) were recommended as teaching aids at St. Petersburg, Kazan, and
Kharkov universities. Having published the work in Russian, Sochocki himself
translated it into Polish and published it in his homeland. He was elected
a corresponding member of the Krakow Academy in 1894. Many famous
mathematicians were among his students: Egor Zolotarev, Georgy Voronoy,
Andrei Kiselev, Ivan (Jaan) Depman, Ivan Ptaszycki, Aleksei Adamov, Eugene
Borisov, Ivan Ivanov, Wiktor Staniewicz, Andrei Zhuravski.

The last years of Sochocki’s life were difficult. His wife and three children
died in starving Petrograd. Here are two emphatic documents. The first is a
notice sent to Sochocki by the Rector of the University, Alexander Ivanov [10]:

Professor Yu.V. Sochocki of the First Petrograd University was en-
rolled on April 10, 1919, on an enhanced food ration [...]
Food will be distributed at the Distribution Desk of the Commissariat
of Public Education (Anichkov Palace, Room 15, 1st front door from
Fontanka, through the gates).
Bread will be given out once a week. Please bring your own crockery
for the sunflower oil.

And here is a letter dated July 10, 1922, from Sochocki himself to the
Commission on the Improvement of the Welfare of Scientists [11]:

Having spent three winters in a row in an unheated flat, my health
has become quite deteriorated. At the present time, in view of my
weakness and the approaching winter, I am forced to apply to the
Commission on the Improvement of the Welfare of Scientists with the
request to arrange for me, if possible, suitable accommodation, where
I could spend the winter months in decent conditions, without any
danger to my life.

Yu.V. Sochocki. July 10, 1922, Fontanka 126, apt. 11.
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The last two years of his life Sochocki spent in a residential home for
elderly scientists at 27 Millionnaya Street. He died on 14 December 1927
and was buried at Novodevichy Cemetery. His grave was recently restored at
the initiative and expense of SPbGASU (Saint Petersburg State University of
Architecture and Civil Engineering). The cross was replaced with a Catholic
one, according to the rite by which Sochocki was buried. Flowers were laid
on his grave from SPbGASU, where he worked for over 50 years, from the
St. Petersburg Mathematical Society, of which he was chairman for about 20
years, and from the Consul General of Poland in St. Petersburg.

Galina Sinkevich
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Two results of Yulian Vasilyevich Sochocki
in a historical perspective

In this note, we discuss two famous results due to Yu.V. Sochocki: the
Casorati–Sochocki–Weierstrass theorem on the behavior of a holomorphic
function near its essential singularity and Sochocki’s formulas for boundary
values of Cauchy-type integrals. We point out the prominent place where these
results have been found in Complex Analysis and show how they influenced
the development of this field of mathematics in the 20th century; we discuss
new statements, problems, and results they led to in their turn.

Casorati–Sochocki–Weierstrass theorem

We start our acquaintance with the results of Sochocki stating a theorem that
is familiar to everyone who has studied the basic university course in Complex
Analysis. This is the theorem on the behavior of a holomorphic function near
its essential singularity. There are several formulations of the corresponding
result, and we will state it in a more general context of the theory of cluster
sets.

Let D be a domain in the complex plane C, let a∈ ¯̄D, and let

f : D \ {a} → Ĉ,

where Ĉ=C∪{∞} is the standard one-point compactification of C.
The cluster set of f at a is the set CD(f , a) consisting of all points w ∈ Ĉ

for which there exists a sequence {zn}∞n=1 of points zn ∈D \ {a} such that
zn→ a and f(zn)→w as n→∞. Thus CD(f , a) is a non-empty closed subset
of Ĉ. The cluster set CD(f , a) is called degenerate if it is a singleton, the set
CD(f , a) is called total if CD(f , a) = Ĉ. The cluster set CD(f , a) which is
neither degenerate, nor total, is called subtotal.

The theory of cluster sets studies the properties of sets CD(f , a) for
functions f from various classes of functions (for instance, for holomorphic or
harmonic functions, for functions realizing various quasiregular mappings, or
for functions that are solutions to various differential equations and systems).
The following theorem contains an exact formulation of the aforementioned
result of Sochocki and, moreover, it may be regarded as one of the very first
results of the theory of cluster sets.



94 Two results of Yulian Vasilyevich Sochocki in a historical perspective

Theorem 1. Let a ∈ D. If f is a meromorphic function in D \ {a}, then
CD(f , a) is either total or degenerate.

In Russian tradition, this theorem is known as Sochocki’s theorem, because
it was contained in the master dissertation by Yu.V. Sochocki presented and
defended in St. Petersburg in 1868. At the same time, in the Western tradition,
this result is usually called the Casorati–Weierstrass theorem, in connection
with the works by F. Casorati (1868) and K. Weierstrass (1876), where it
was independently published. There is also a mention of this theorem in
the first edition of the book by C. Briot and C. Bouquet (1859), but it was
omitted in the latter editions of this book. These historical remarks concerning
the terminology may be found in such classical books as Theory of functions
of a Complex Variable by A. I. Markushevich, The Theory of Cluster Sets
by E. F. Collingwood and A. J. Lohwater. So the name Casorati–Sochocki–
Weierstrass theorem seems to be more appropriate.

The proof of the Casorati–Sochocki–Weierstrass theorem is rather simple
and can be obtained using the following arguments. Assume that the set
CD(f , a) is subtotal. Then there exists w ∈ Ĉ such that w /∈ CD(f , a).
Therefore the function

g(z) =


1

f(z)−w , w ∈ C,

f(z), w = ∞,

is holomorphic and bounded in a punctured neighborhood of a. This implies
that a is a removable singularity for g, and hence the set CD(g, a) is degenerate.
But the latter fact yields immediately that the set CD(f , a) is also degenerate.

A substantial strengthening of the Casorati–Sochocki–Weierstrass theorem
was given by the great Picard theorem which says that if a holomorphic
function f has an essential singularity at some point a ∈ Ĉ, then in any
punctured neighborhood of a the function f takes on all possible complex
values, with at most a single exception, “infinitely often.”

In the 20th century, various results in one and several complex variables
were obtained inspired by or related to the Casorati–Sochocki–Weierstrass and
Picard theorems. For instance, results of a similar nature were obtained for
harmonic and polyanalytic functions in C, for quasiregular mappings in Rn,
etc. However, the development of the theory of cluster sets took a different
path: within the framework of this theory one begins to study the properties of
the sets CD(f , a) in the most difficult case when a point a lies on the boundary
of the domain D in which the function f is defined.

Sochocki’s formulas for boundary values of Cauchy-type integrals

Another important contribution of Sochocki deals with the boundary behavior
of Cauchy-type integrals. Let Γ be a rectifiable closed Jordan curve in C, let
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D be a Jordan domain bounded by Γ and D∞ be the domain Ĉ \ ¯̄D. Note that
the standard Lebesgue spaces Lp(Γ ), p> 1, are well-defined with respect to the
arc-length measure on Γ . Given a function f ∈L1(Γ ), consider the function

F (z) = 1
2πi

∫
Γ

f(ζ) dζ

ζ − z ,

which is well-defined and holomorphic on D∪D∞. This function is tradition-
ally called a Cauchy–type integral, or a Cauchy transform of the function f
(or the measure f dζ).

An interesting, important, and deep question is to realize the behavior of
F (z) when z tends to Γ . Of course, we need to specify in what sense the
boundary behavior of F (z) is understood. To do that, let us consider the
following settings.

a) Since Γ is rectifiable, it has a tangent almost everywhere (with respect to
the arc-length measure on Γ ). Therefore, it makes sense to pose the question of
describing the set of points ζ ∈Γ where there exist the non-tangential boundary
values Fi(ζ) of F at ζ from D. By definition,

Fi(ζ) = limF (z)

when z tends to ζ along a path lying in D ∪ {ζ}, ending at ζ, and running
non-tangential to Γ , if this limit exists and has the same value along any such
path.

b) One can ask the same question on the existence of non-tangential
boundary values Fe(ζ) of F at ζ from D∞.

c) One can also consider the principal value of the corresponding singular
integral at the point ζ ∈Γ , that is

Cf(ζ) = lim
δ→0

1
2πi

∫
Γ\B(ζ,δ)

f(w) dw

w− ζ , where B(ζ, δ) = {w : |w− ζ| < δ}.

To describe the Sochocki contribution to the topic let us consider the case
when the initial function f is Hölder continuous on Γ , that is there existM > 0
and α> 0 such that |f(ζ)− f(ζ ′)|6M |ζ − ζ ′|α for all ζ, ζ ′ ∈Γ . Then it can be
readily proved that Cf(ζ) exists at every point ζ ∈Γ , where Γ has a tangent.
Namely,

Cf(ζ) = 1
2πi

∫
Γ

f(w)− f(ζ)

w− ζ dw+
f(ζ)

2πi
lim
δ→0

∫
Γ\B(ζ,δ)

dw
w− ζ .

The first integral converges absolutely (due to Hölder continuity of f), while
the second one can be computed explicitly and tends to 1/2 since the internal
angle of the domain D at the boundary point ζ is π (provided that Γ has a
tangent at ζ), and, therefore,

Cf(ζ) = 1
2πi

∫
Γ

f(w)− f(ζ)

w− ζ dw+ 1
2
f(ζ).
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We omit all technical details that can be found, for instance, in the book by
Markushevich, cited above.

Similarly, for a Hölder continuous function f and for every z ∈D and ζ ∈Γ
we have

F (z) = 1
2πi

∫
Γ

f(w)− f(ζ)

w− z dw+ f(ζ)

because
∫
Γ

(w − z)−1 dw = 2πi. Assuming that Γ has a tangent at ζ and

tending z to ζ non-tangentially we obtain

Fi(ζ) = 1
2πi

∫
Γ

f(w)− f(ζ)

w− ζ dw+ f(ζ),

where the first integral converges absolutely as before. Thus, for almost
all ζ ∈Γ it holds

Fi(ζ) = Cf(ζ) + 1
2
f(ζ).

Finally, for every z ∈D∞ and ζ ∈Γ we have

F (z) = 1
2πi

∫
Γ

f(w)− f(ζ)

w− z dw,

which implies
Fe(ζ) = Cf(ζ)− 1

2
f(ζ)

for every ζ where Γ has a tangent.
Summarizing the constructions above and observations, we are going to

state the next result:

Theorem 2. Let Γ be a rectifiable closed Jordan curve in C, and let f be a
Hölder–continuous function on Γ . Then the values Fi(ζ), Fe(ζ) and Cf(ζ)
exist for almost all point ζ ∈Γ and the following formulas hold

Fi(ζ) = Cf(ζ) + 1
2
f(ζ),

Fe(ζ) = Cf(ζ)− 1
2
f(ζ),

Fi(ζ)−Fe(ζ) = f(ζ).

The formulas linking Fi(ζ), Fe(ζ) and Cf(ζ) in the theorem stated above
are called Sochocki’s formulas; they were obtained for the first time in the
doctorate dissertation by Yu.V. Sochocki (1873). Note, moreover, that this
theorem gives the formulation of the corresponding Sochocki proposition in
the modern language (it is very plausible that Sochocki himself dealt with
sufficiently smooth curves rather than with rectifiable ones).
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Traditionally, Sochocki’s formulas are also called Sochocki–Plemelj formu-
las because they were obtained (most likely completely independently) by
J. Plemelj in 1908 (Monatshefte für Mathematik und Physik, vol. 19).

This result opened a long line of research related to the boundary behavior
of Cauchy-type integrals. The assumptions made above to obtain the Sochocki
formulas turned out to be more restrictive than necessary, and it is interesting
and important to obtain the most general conditions that ensure the existence
of boundary values for Cauchy-type integrals.

The first famous result in this line was the celebrated Privalov lemma, which
sounds as follows.
Theorem 3. Let Γ be a rectifiable closed Jordan curve in C, and let f ∈L1(Γ ).
Then either the values Fi(ζ), Fe(ζ) and Cf(ζ) simultaneously exist or do not
exist for almost all points ζ ∈Γ . Moreover, whenever these quantities do exist,
they are connected by Sochocki’s formulas in all points ζ ∈ Γ where Γ has a
tangent.

We emphasize that Privalov’s lemma leaves open the question of how large
the set of points can be where there are no boundary values of a Cauchy-type
integral, and much time and effort were needed to solve it.

Note that Cauchy type integrals can be defined not only for functions, but
for an arbitrary measure as well. Namely, for a measure µ on Γ let

F (z) = 1
2πi

∫
Γ

dµ(w)

w− z , z ∈ D∪D∞,

Cµ(ζ) = lim
δ→0

1
2πi

∫
Γ\B(ζ,δ)

dµ(w)

w− ζ , ζ ∈ Γ.

In this case, it can be verified that the Sochocki formulas and Privalov’s lemma
remain valid if we set f = dµ/dz (the Radon–Nikodym derivative).

Since the definitions of all quantities Fi(ζ), Fe(ζ) and Cf(ζ) are of local
nature, one can define these objects in the case when Γ is an arbitrary
rectifiable curve in C, not necessarily closed and/or Jordan one. In this case
we denote by Fi(ζ) and Fe(ζ) the limits of F (z) taking when z approaching ζ
from the one side of Γ (from the left-hand side or from the right-hand one with
respect to the orientation on Γ , respectively).

A further natural question is as follows: Under what assumptions on a
rectifiable curve Γ , do the quantities Fi(ζ), Fe(ζ) and Cf(ζ) exist at almost
all points ζ ∈Γ for all f ∈L1(Γ ), or for all finite complex valued Borel measures
µ on Γ?

This question turned out to be very difficult, and its solution took a lot of
time and many serious efforts. Actually, the deep theory of singular integral
operators due to A.P. Calderón and A. Zygmund was created and highly
developed because of investigations of this question. The following result was
obtained at the end of the 1970s (a hundred years after Sochocki’s formulas
were obtained)
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Theorem 4. Let Γ be a rectifiable curve in C. For every function f ∈L1(Γ )
the values Fi(ζ), Fe(ζ) and Cf(ζ) exist for almost all ζ ∈Γ . The same applies
to every bounded complex valued Borel measure µ on Γ .

This result is the consequence of two celebrated works. The first one is
the work by St. Petersburg mathematician V.P. Havin who proved in 1965
(Sbornik: Mathematics, vol. 68, issue 4) that the boundary values Fi(ζ) exist for
almost all ζ ∈Γ for arbitrary measures provided that they exist for continuous
functions. A suitable modifications of Havin’s arguments allow us to reduce the
case of an arbitrary rectifiable curve to the case of a Lipschitz curve with an
arbitrarily small Lipschitz constant. The second work is the famous paper
by A.P. Calderón, 1977 (Proceedings of the National Academy of Science
of the USA, vol. 74). Calderón proved that if Γ is a Lipschitz curve with
sufficiently small Lipschitz constant, then the operator C is of weak-type (1, 1)
and bounded in Lp(Γ ) for 1<p<∞, and Cf(ζ) exists for almost all ζ ∈Γ for
every f ∈Lp(Γ ), 16 p<∞.

Describing rectifiable curves Γ such that the operator C is bounded in
Lp(Γ ), 1< p<∞, requires a relatively long explanation to give its compre-
hensive survey. Nevertheless, we give a very brief outline of the history of
this question, because it is closely related to our topic and, moreover, because
its initial point is the Calderón work cited above. In 1981 R.R. Coifman,
A. McIntosh and Y. Meyer (see Annals of Mathematics, vol. 116) showed that
the operator C is bounded in L2(Γ ) on an arbitrary Lipschitz curve Γ . Let
us mention, that if C is bounded in Lp(Γ ) for some p, or if C is of weak-type
(1, 1), then C is bounded in Lp(Γ ) for all p, 1< p <∞, and it is of weak-
type (1, 1). It also can be verified, that if C is bounded in Lp(Γ ) for some p,
1< p<∞, then Γ is a Carleson curve, that is for every ζ ∈ Γ and for every
r > 0 we have

Length({w ∈ Γ : |w− ζ| < r}) 6 Ar,

where A> 0 is a constant that depends only on Γ . The final point of the story
was set in 1984 by G. David who proved that C is bounded in L2(Γ ) if and only
if Γ is a Carleson curve (Annales scientifiques de l’École Normale Supérieure,
sér. 4, vol. 17).

Speaking about the influence of the aforementioned results and construc-
tions, one ought to mention the long-time story of the Painlevé problem
about describing the sets of removable singularities for bounded holomorphic
functions. We refer the reader to an excellent account of this problem given by
M. S. Mel’nikov in 2001 (Proceedings of the Steklov Institute of Mathematics,
vol. 235), where one can find the interesting explanation of the story and several
important references to works by P. Mattila, M. S. Mel’nikov, J. Verdera,
X. Tolsa concerning the matter.

Thus, the results obtained by Yu.V. Sochocki in 1873 have found their
prominent place in Complex Analysis. Moreover, they can be linked to at
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least two interesting and important directions in Complex Analysis (namely to
the theory of cluster sets and to the theory of boundary properties of Cauchy-
type integrals), whose development had a noticeable impact on mathematics
of 20th century.

Konstantin Fedorovskiy, Petr Paramonov



Georg Cantor (1845––1918)

Georg Cantor was the creator of the set theory. He was born and spent his
childhood years in St. Petersburg. When he was 11, his family left for Germany,
where he became a mathematician. Cantor wrote his main works in set theory

from 1872 to 1884. In 1878, Cantor formulated
the continuum hypothesis; in 1891, he invented
the diagonal argument, and in 1895––1897, he
created the theory of transfinite numbers.

Georg Cantor spent the first 11 years of his
life in St. Petersburg. Three previous genera-
tions of his ancestors, who came from Hungary,
Bohemia, Denmark, and Portugal, lived in
St. Petersburg and worked for the benefit of
St. Petersburg culture in the eighteenth and
nineteenth centuries. Among his St. Peters-
burg kin were such bright talents as the violin-
ists Joseph, Franz, and Ludwig Böhm, Maria
Böhm-Moravek and Hartwig Meyer; Dimitri
Meyer, the creator of Russian civil law; mer-
chants and businessmen.

The future mathematician Georg Ferdinand Ludwig Philipp Cantor was
born in St. Petersburg on March 3 (February 19, Old Style) 1845 into the family
of Georg Voldemar Cantor and Maria Anna Cantor, née Böhm. His father,
who came from Copenhagen Jews, with Portuguese ancestry, was baptized as
a Lutheran. He was a stockbroker and trader who settled in St. Petersburg
in 1834. Georg Cantor’s mother was from a family of musicians of Austrian
origin living in St. Petersburg. The mathematician was the first-born, and he
was baptized in the same St. Catherine’s Lutheran Church (Bolshoi Avenue 1,
Vasilievsky Ostrov), where Leonhard Euler was a parishioner in his time.

A letter from Georg Woldemar Cantor to his cousin Dimitri Meyer, written
in 1851, is kept in the Manuscript Department of the Russian National Library.
In it, he described the “harsh turmoil of his life,” the exhausting competition,
his apathy, his children, house guests, cold winter evenings, boiled beef for
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dinner, and boiling samovar.1 Here is what Georg Woldemar wrote of his
eldest son: “The eldest, seven years old, is called Georg Ferdinand Ludwig
Philipp; he is naturally gifted with a preference for order over everything else
and is sanguine in character.”

The family lived on the 11th Line of Vasilyevsky Island in the house of a
merchant named Transchel. There is now a memorial plaque on the house.
Pafnuty Chebyshev and Osip Somov, young University adjuncts then, lived in
that house during the same years. On warm days, the windows were open,
and they could hear the Cantor children learning to play the violin under their
mother’s guidance. Georg Cantor retained his love for the violin throughout
his life, and as a student, he even organized a violin ensemble with his friends.
Towards the end of his life, Cantor expressed his regret that he did not become
a violinist.

In 1854, Georg began his studies at Petrischule (Saint Peter’s School), the
oldest school in St. Petersburg. Georg liked geography and mathematics best.

Georg Voldemar Cantor’s illness (tuberculosis) forced him to ask for a leave
to improve his health. His family was supposed to leave for a year. In the spring
of 1856 the family left St. Petersburg, as it turned out, forever.

They first moved to Frankfurt, then to Halle. Cantor Sr wanted his son to
become an engineer, but he chose mathematics, for which he enrolled at the
Polytechnikum in Zürich (ETH Zürich).

After his father’s death, Georg Cantor moved to Berlin and graduated
from the University of Berlin. His teachers were Ernst Kummer, Leopold
Kronecker, and Karl Weierstrass, who had a particular influence on Cantor.
The generation of students who graduated in these years included many famous
names. Among Cantor’s fellow students whom he befriended were Wilhelm
Thomé, Franz Mertens, and Hermann Schwarz. Every week, the friends
would meet to drink wine and talk about mathematics. Their friendship and
correspondence continued for many years.

The summer semester of 1866/67 Cantor spent at the University of
Göttingen, where he attended lectures by the philosopher Hermann Lotze, the
physicist Wilhelm Weber, and the mathematicians Bernhard von Minnigerode
and Ernst Schering. At first, Cantor took an interest in number theory. In
1867, in Berlin, Cantor defended his thesis on number theory De aequationibus
secundi gradus indeterminatis 2 under the supervision of Kummer, for which
Cantor was awarded a degree. For a while, Cantor worked at the Friedrich-
Wilhelm Gymnasium for Girls in Berlin. In 1869, Georg Cantor submitted his
work on number theory On the Transformation of Ternary Quadratic Forms,
which he wrote under the guidance of Eduard Heine, to earn the right to

1 Samovar is a kettle of sorts, which has a distinctive feature: a metal pipe running
vertically through the middle, which is filled with solid fuel, which is ignited to heat the
water in the surrounding container.

2 Indeterminate equations of the second-degree.
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Fragment of G.W. Cantor’s letter.

lecture in Halle. Cantor was interested in problems of analysis, particularly
the convergence of trigonometric series. Cantor wrote to his sister:

The more I look at my mathematics, the more I see that it in my
heart and mind leads me to happiness and good fortune. Work has
been and will be for me the true meaning of my life and my desire,
filled with a physical sensation and a sense of satisfaction, in it I feel
that I am free in my activity with regard to the benefit to society,
which is a pleasurable opportunity as well. I believe that this hope
is above all linked to Halle, a real and holistic field awaits me there,
which corresponds to my work, perhaps there I will gain recognition
and my aspirations will find application.

In 1869 Cantor was made a privatdozent at the University of Halle and be-
came a lecturer in the mathematical seminar at the Department of Philosophy.
He remained at that university for the rest of his life. From 1872 to 1877, he
was professor extraordinaire at the Faculty of Natural and Social History, and
from 1877 to 1913, he was professor ordinarius.

The need for a new understanding of real numbers and continuity was part
of the mathematical zeitgeist of the nineteenth century. From 1822 onwards,
the problem of the convergence of trigonometric series and the uniqueness of
the expansion of a function in a series arose in the works by J.-B. Fourier. In
1829, G. Lejeune Dirichlet formulated a sufficient condition for the convergence
of trigonometric series. But applications demanded an expansion of the class
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of functions presentable as convergent Fourier series and, consequently, a deep
analysis of the notions of number and continuity.

Eduard Heine began his work in Berlin with Dirichlet, whom he considered
his teacher, and continued research of the latter conducted on the convergence
of trigonometric series. In 1870 he published the paper On the Convergence
of Trigonometric Series, in which he stated another sufficient condition for
convergence. In pursuit of extending the generality of his results he introduced
in 1872 the notion of uniform continuity. Note that the terms “continuity” and
“convergence” were then vague and intuitive and were understood by each
mathematician in his own way. For example, there were more than seven
kinds of uniform convergence. There were no other familiar analysis terms
then either: Heine would not have recognized his famous Heine–Borel theorem
in its modern form.

In 1870 Cantor proved that for a function continuous on an interval, its
representation by a trigonometric series is unique. He extended this result to
functions with a finite number of discontinuities. But Cantor wanted to find
out whether this uniqueness would remain if the set of discontinuity points is
infinite, and it was in connection with this problem that he started the study
of subsets of the number line(real line), and then of sets in general.

The year 1872 was the birth year of the set theory. Heine, Georg Cantor, and
Richard Dedekind published their works on the subject. Cantor’s paper was en-
titled Über die Ausdehnung eines Satzs aus der Theorie der trigonometrischen
Reihen.3 This was his first work on trigonometric series, but in it Cantor
also considered numbers as limits of what is now called Cauchy sequences
and introduced the notion of limit points (accumulation points in modern
terminology). At the same time, in 1872, Richard Dedekind introduced his
“Dedekind cuts.”

Georg Cantor and Richard Dedekind met during a summer holiday in Inter-
laken in the early 1870s. This acquaintance started a long-standing friendship
and correspondence. Cantor continued to reflect on the structure of number
sets. He has not yet formed his own terminology (“set”, “countability”, “power”),
but he considered one-to-one correspondence to be the central concept.

In 1873, he wrote to Dedekind about his attempt to establish such a
correspondence between positive integers and real numbers, although he noted
that the question was of no practical value.

Cantor’s ideas and his correspondence with Dedekind led to a construction
that was highly appreciated by Weierstrass, who visited Cantor in Berlin on
23 December 1873 and recommended the results be published. This work
by Cantor, Über eine Eigenschaft des Inbegriffes aller reellen algebraischen
Zahlen 4 was published in 1873. In it, Cantor considers the set of roots
of algebraic equations with integer coefficients and establishes a one-to-one

3 On the extension of a theorem from the theory of trigonometric series.
4 On a Property of the Collection of All Real Algebraic Numbers.
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St. Catherine Lutheran Church, where Cantor was baptized and where Leonhard
Euler was a parishioner in his time, Bolshoi Avenue 1, Vasilievsky Ostrov.

correspondence between them and positive integers. In 1878, Cantor published
his first major work Ein Beitrag zur Mannigfaltigkeitslehre,5 in which he
introduced the concept of equivalence or equinumerosity, proving the existence
of a one-to-one correspondence between one-dimensional and multidimensional
continuous objects. The continuum hypothesis was formulated for the first
time in this paper. In 1879 Cantor was elected a corresponding member of the
Society of Sciences in Göttingen. His work Über einen Satz aus der Theorie der
stetigen Mannigfaltigkeiten 6 was published, in which he continued to establish
the correspondence between objects of different dimensions.

In 1879, Cantor published Über unnendliche lineare Punktmannig-
faltigkeiten 7 in Mathematische Annalen, the first in a series of papers. The
following parts appeared in 1880, 1882, and 1883. The famous “Fifth
Memoir” entitled Grundlagen einer allgemeinen Mannigfaltigkeitslehre: Ein
mathematisch-philosophischer Versuch in der Lehre des Unendlichen,8 as well
as the last in the series Über unendliche lineare Puktmannigfaltigkeiten 9 was
also published in 1883.

Ernst Zermelo wrote that the series of works

5 On the Study of Manifolds.
6 On a theorem from the theory of continuous manifolds.
7 On infinite linear point manifolds.
8 Foundations of a General Theory of Manifolds: A Mathematical-Philosophical Study

in the Doctrine of the Infinite.
9 On infinite linear point manifolds. “Linear point manifold” is a certain subset of a real

line.
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...published in several volumes of Annalen in 1879––1884 goes far
beyond the limits indicated by its title and actually includes all the
results obtained by Cantor in the field of both abstract and applied
set theory, in particular the theory of equivalence and cardinality, as
well as ordering and ordinal numbers. It also provides a more detailed
account of Cantor’s theory of irrational numbers (no. 5, § 9) as well
as a philosophical polemic with opponents of the actual infinite. In
fact, the works in this cycle contain a statement of Cantor’s whole
set theory; the works written in subsequent years comment on and
supplement the theory.

The diagonal argument appeared in 1892 in Über eine elementare Frage der
Mannigfaltigkeitslehre.10

Cantor’s subsequent papers were extracts from his letters to Gösta Mittag-
Leffler, the editor of Acta Mathematica. These are Sur divers théorèmes de la
théorie des ensembles de points situés dans un espace continu a n dimensions,11
De la puissance des ensembles parfaits de points,12 and Über verschiedene
Theoreme aus der Theorie der Punktmengen in einem n-fach ausgedehnten
stetigen Raume Gn.13 Here we find for the first time the statement that any
cardinality is an aleph number.

The year 1884 was a difficult one for Cantor. His awareness of his work
as a coherent theory clashed with his colleagues’ misunderstanding. Cantor
dreamed of working at the University of Berlin, but this was opposed by his for-
mer teacher, Leopold Kronecker, who chaired the Department of Mathematics
at the university. He denounced Cantor’s theories, calling him a “corrupter of
youth.” Kronecker was the founder of constructive mathematics, and Cantor’s
set theory explored the properties of sets without any concrete representation
of them. Cantor took the criticism hard. Mistrustful and prone to depression,
he would shut himself away for long periods of time and lose his efficiency after
situations that traumatized his psyche.

Cantor tried to conceptualize and defend his investigations of the infinity
and wrote a series of philosophical works. The first of them was Principien
einer Theorie der Ordnungstypen. Erste Mitteilung: Auszug eines Schreibens
an den Herausgeber.14 Mittag-Leffler refused to print this work, and it was
first published in 1970.

From 1884 Cantor had to be treated in a psychiatric hospital. Each
exacerbation of his illness entailed a change in the direction of his interests.
In 1884 he refused to lecture in mathematics and expressed a desire to read
philosophy, while at the same time, on the advice of his sister Sophie, he turned

10 On one elementary question of the doctrine of manifolds.
11 On various theorems in the theory of sets of points situated in a continuous space of n

dimensions, 1883.
12 On the power of perfect sets of points, 1884.
13 On various theorems in the theory of point sets in an n-times extended space Gn, 1885.
14 Principles of a theory of order types. First message: Extract of a letter to the editor.
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to the literature of the Elizabethan era, wishing to justify the hypothesis that
the real author of the works of Shakespeare was Francis Bacon. He published
the results of his research in two articles in 1897. He also drew on the work
of the German theologian and visionary Jacob Boehme (1575––1624) and the
English thinker John Dee (1527––1609), who was interested in magic. Cantor’s
lectures in philosophy were not popular, and he abandoned the endeavor.

From this time onwards, his interests shifted to the philosophical grounding
of set theory, and he entered into correspondence with philosophers and
theologians. Interestingly, although Cantor was a Protestant, he turned to
Catholic theologians. This may have been due to the rich literature on infinity,
and above all to the works of such a classic of Catholic theology as Thomas
Aquinas. Cantor’s correspondence on philosophical issues was published in
1886––1888.

In fact, Cantor’s entire set theory was expounded in 24 of his papers. In
1889 Cantor was accepted into the German Academy of Natural Sciences
(Deutsche Akademie der Naturforscher Leopoldina), which had been based
in Halle since 1878. Cantor’s authority among mathematicians gradually
increased. He was always very kindly treated and appreciated by Karl Weier-
strass. In 1890 Cantor initiated the formation of the German Mathematical
Society. Cantor became the first chairman of the Society and published the
first two volumes of its yearbook. In September 1891 the first meeting of the
Society was held in Halle. Meanwhile, the set theory grew in popularity and
acceptance among European mathematicians.

In 1890/91 Cantor published On an Elementary Question of the Theory of
Manifolds, outlining the diagonal argument. In 1895––97 he wrote his last (and
incomplete) work Beiträge zur Begründung der transfiniten Mengenlehre.15 In
it, he summed up the statement of his theory, finalized and substantiated
it. The works in which the theory of transfinite numbers emerged date from
1895––97. In the late 1890s Cantor realized the paradoxes of set theory. In
1896 Cantor discussed them with Hilbert, and in 1897 a paper by Burali-Forti
was published, on the paradox that Cantor himself had discovered.

In 1897, Cantor initiated and participated in the First International
Congress of Mathematicians in Zürich. At this congress, Adolf Hurwitz
expressed his deep admiration for Cantor and his contributions to function
theory. The French mathematician Jacques Hadamard also praised the set
theory as a necessary research tool.

In September 1903 at the second meeting of the Mathematical Society in
Munich Cantor gave a talk on the paradoxes of set theory. However, due to
illness, he withdrew as the chairman. In the same year Cantor was again
admitted to a mental institution.

15 Contributions to the Founding of the Theory of Transfinite Numbers.
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A year later, in August 1904 Cantor attended the International Mathe-
matical Congress in Heidelberg. At this congress, there were criticisms of set
theory, which Cantor took somewhat hard.

In 1913 Cantor retired. World War I broke out. Living conditions
became hard, and food shortages followed. Cantor suffered from poverty and
malnutrition. An all-European celebration of his 70th birthday was planned
for 1915, but the war limited the festivities to a small party at home and the
congratulations from his German colleagues. In June 1917, Cantor was for the
last time admitted to the Hospital for Nervous Diseases in Halle, where he died
of a heart attack on 6 January 1918.

Cantor’s ideas gradually spread around the world and gained wide accep-
tance. His set theory began to play the role of the language of mathematics,
but it also aroused wariness and controversy among mathematicians with its
paradoxes, open questions, and hypotheses, which subsequently gave rise to
various logical and philosophical theories, as well as new fields of mathematics.

From 1909, the Polish mathematician Waclaw Sierpinski was teaching a full
course in set theory at the University of Lvov. Russian mathematicians who
had been to the universities of Berlin and Göttingen and read Crelle’s Journal
(all universities received it) were introduced to the ideas of set theory.

In 1894 in Odessa Samuil Shatunovsky published a translation of Dedekind’s
work Continuity and Irrational Numbers, and in 1896 Proof of the existence of
transcendental numbers (as per Cantor).

From 1900 to 1901, at Moscow University, Boleslaw Mlodzeewsky taught a
course in the theory of functions of a real variable involving set theory.

In 1904, a student at Moscow University, Pavel Florensky published On the
Symbols of Infinity, a good exposition of Cantor’s theory.

Between 1904 and 1908, Kazan University Press published in several parts
lectures by Alexander Vasiliev (1853––1829), a propagandist of set theory,
entitled Introduction to Analysis.

In 1905 Samuil Shatunovsky read mathematical analysis at Novorossiysk
University in Odessa, using concepts and methods of set theory. The course
was lithographed in 1906––1907; it influenced Grigory Fichtenholz, Dmitry
Kryzhanovsky, and Igor Arnold. In 1910 the seminar on the theory of functions
organized by Dmitri Egorov at the Moscow University began, and with it
started the history of the Moscow school of the theory of functions, which
was headed by Egorov and Nikolai Luzin. In 1914 three works by Cantor
from the Foundations of a General Theory of Manifolds, translated by the
Russian philosopher and public figure Pavel Yushkevich (1873––1945), were
published in St. Petersburg in the 6th issue of New Ideas in Mathematics
edited by Vasiliev. It is worth mentioning that Alexander Vasiliev, the Kazan
mathematician and popularizer of Cantor’s work, also highly appreciated the
work of Cantor’s uncle, Dimitri Meyer, a professor of law at the universities of



108 Georg Cantor

Kazan and St. Petersburg. Vasiliev had two portraits in his house: of Nikolai
Lobachevsky and Dimitri Meyer.

Despite the incredible popularity of Cantor’s theory, no one was rushing
to translate his works into Russian. Suffice it to say that the publication
of Cantor’s works in Russian was stopped at the insistence of Lev Pontrya-
gin. The translation was done by the well-known mathematician Abram Fet
(1924––2007), who lived in Novosibirsk. He translated Cantor’s biography
written by Adolf Frenkel, as well as all his works.

In 1985, Works in Set Theory by Georg Cantor was published by Nauka
Publishing House in translations by Fedor Medvedev and Pavel Yushkevich,
edited by Adolph Yushkevich and Andrei Kolmogorov.

Galina Sinkevich
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Cantor and the Founding of Set Theory

Georg Cantor (1845––1918) was a pivotal mathematician who, with his
seminal work on sets and numbers, ushered in a new way of proceeding in
mathematics, one at base infinitary and combinatorial, and brought forth a new
field of inquiry, set theory. Steadily driven by mathematical problems, first in
ongoing analysis and then in his developing context of transfinite cardinals,
Cantor struggled in a classical intensional milieu to articulate and secure
an expanding conceptual terrain of infinite sets and limits. That Cantor’s
conceptualizations and arguments may now be rendered succinctly, as here, is
a testament to how his ways of thinking have become commonplace in modern
mathematics.

After completing a Habilitation in number theory, in 1870, Cantor began
working in real analysis, specifically on the uniqueness of trigonometric series.
In this, Cantor was soon driven by the necessity (as the mother of invention)
to articulate proofs clearly. He defined the real numbers — an insurgent
move at the time — in terms of Cauchy sequences; he defined for a set P
of reals the set P ′ of its limit points, introducing for the first time an operation
on infinite sets; and he already considered the possibility of its transfinite
iteration, taking intersections at limits and indexing with “symbols of infinity”:
P (∞) =

⋂
P (n), P (∞+1), P (∞+2), . . . P (∞·2), . . . P (∞2), . . . P (∞∞), . . .

Uncountability and Continuum Hypothesis

Spurred to consider enumerations of real numbers for their own sake, Cantor
realized that, while the algebraic real numbers are countable, i.e., can be put
into one-to-one correspondence with the positive integers, there is a counting
reason why there must be transcendental numbers. Set theory was born on 7
December 1873 when Cantor established: The real numbers are uncountable.

Cantor’s proof was structured with limits à la Cauchy sequences, and can be
given a quick modern gloss: Suppose that {ai}i is a sequence of reals indexed by
positive integers i. Define a sequence {Ii}i of closed intervals of reals recursively
so that: a1 /∈ I1, and Ik+1 is a subinterval of Ik such that ak+1 /∈ Ik+1. Then,
any real in the intersection of the Ii’s is not in the sequence.

With this, Cantor began to investigate cardinality for infinite totalities,
two such said to have the same power if there is a one-to-one correspondence
between them. In 1877, he carefully established that [0, 1]n, the n-tuples of
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real numbers in the unit interval [0,1], has the same power as [0, 1] itself. This
seemed to compromise the continuous manifolds studied then, but Dedekind
pointed out that the “dimension-number of a continuous manifold remains its
first and most important invariant.” Cantor agreed, and he and others soon
worked on articulating why there are no “continuous” one-to-one correspon-
dences. Eventually, the invariance of dimension was definitively established by
the young Brouwer in 1911, thus leading to the field of algebraic topology.

Continuity aside, Cantor had reduced considerations of power to linear
manifolds, and in 1878, he contended that “the linear manifolds would consist of
two classes” one consisting of manifolds having the same power as the positive
integers and the other consisting of manifolds having the same power as the
unit interval. This was the Continuum Hypothesis in nascent form, and Cantor,
having made prodigious progress to arrive at this continuum problem to be
resolved, would grapple with it in increasing arithmetical and combinatorial
terms raising basic questions of set existence—as we continue to do today.

The Transfinite Numbers

Abstracting enumerations to handle power, Cantor, in his magisterial 1883
Grundlagen set out the transfinite numbers and the key concept of well-
ordering. Well-orderings carry the sense of sequential enumeration; the transfi-
nite numbers, no longer the contrivance of “symbols of infinity”, became numer-
als for gauging well-orderings; and in a new notation, the numbers themselves
could be sequentially cast: 0, 1, 2, . . . , ω, ω+ 1, ω+ 2, . . . , ω+ω(=ω · 2), . . . ,
ωω, . . . ωω

ω
, . . .

The transfinite numbers were to provide the framework for Cantor’s two
approaches to the continuum problem, one through power and the other
through definable sets of reals. As for the first, Cantor established, with (II)
the class of those transfinite numbers gauging countable well-orderings, that:
(II) is uncountable, yet any subset of (II) is either countable or else has the
same power as (II) itself. Thus, Cantor had reduced the continuum problem to
showing that (II) and the unit interval have the same power. As for the second,
this evolved from Cantor’s early engagement with the P ′ operation. Cantor
defined the concept of perfect set of reals (non-empty, closed, and containing
no isolated points), and established through transfinite iteration of the P ′
operation that any closed uncountable set of reals is the union of a perfect set
and a countable set. Since he had shown that a perfect set has the same power
as the unit interval, he had reduced the continuum problem to showing that
there is a closed set of reals having the same power as (II).

Cantor’s 1895––7 Beiträge presented his mature theory of the transfinite. He
now had cardinal numbers and their arithmetic; ordertypes of linear orderings;
and ordinal numbers and their order comparability. He generalized his corre-
lation of tuples of reals with “a few strokes of the pen”: (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 .
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He characterized the ordertype of the rationals as the countable dense linear
orderings without endpoints. He provided a normal form for the ordinal
numbers. Although he could now state the Continuum Hypothesis as 2ℵ0 =ℵ1,
it was evident that he had not made any further progress toward it. Be that as
it may, it was the continuum problem that had inspired enumeration structures
that would become basic in the further development of set theory. And a
specific argument arrived at by Cantor in context would become pivotal.

The Diagonal Argument

Almost two decades after establishing that the reals are uncountable, Cantor
in a short 1891 note subsumed the result and moreover affirmed “the general
theorem, that the powers of well-defined sets have no maximum”, by establish-
ing: For any set L, the totality of all functions from L into a fixed two-element
set is of a higher power than L. We can, by following his own words, witness
the first appearance of the diagonal argument :

TakingM to be the totality of all functions: L→{0, 1}, assume that there is
a one-to-one correspondence between L andM , so that “M could be . . . thought
of in the form of a single-valued function of the two variables x and z [ranging
over L], φ(x, z), such that . . . to every element f(x) ∈M there corresponds
a single determinate value of z such that f(x) = φ(x, z). But this leads to a
contradiction. For if one understands by g(x) the single-valued function of x
which takes on only the values 0 and 1 and is different from φ(x, x) for every
value of x, then on the one hand g(x) is an element of M , and on the other
hand g(x) cannot arise from any value z = z0 of φ(x, z), because φ(z0, z0) is
different from g(z0).”

With this argument, a new simplicity was achieved, made possible by
the assumption of universality, the positing beforehand of the totality of all
functions of a certain sort. Once appreciated, the argument would become
technique, and detached from its initial moorings it would undergird the
development of mathematical logic itself.

Lebesgue in 1905 deployed the diagonal argument to develop a transfinite
hierarchy for the Borel sets and the Baire functions. This diagonal approach
to hierarchy would be deployed into the 1930s by Luzin and his Moscow school
of descriptive set theory in their investigation of “regularity” properties like
Cantor’s perfect set property. In 1901, Bertrand Russell analyzed Cantor’s
diagonal argument applied to the class of all classes and came up with the
famous Russell’s paradox. In reaction, he built a complex logical structure,
the ramified theory of types, in which mathematics was developed in 1910––13
Principia Mathematica. The young Gödel, after reading in Principia about a
hierarchy of truth and a paradox, Richard’s, based on the diagonal argument,
established in 1930 his celebrated Incompleteness Theorems, the crux being
a positive use of Richard’s paradox. In the 1930s, recursion theory would be
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developed out of Gödel’s work with the diagonal argument ever in play, to
a truly remarkable fixed-point application, Kleene’s 1938 Second Recursion
Theorem. By then, Gödel had developed the inner model of constructible sets
as a transfinite extension of Russell’s ramified theory of types, and showed that
in the model the Continuum Hypothesis holds. So much, then, can be seen
as having been driven forth by Cantor’s diagonal argument, all the way to the
consistency of his Continuum Hypothesis.

Even though Cantor’s continuum problem remains unresolved, its continu-
ing investigation is central to Set Theory today. Of course, there is no possible
formal solution by the results of Gödel and Cohen, but Cantor would be the
first to claim that this does not mean the problem has no answer. There have
been notable successes; for example, in the case of the natural extension of the
Borel sets to the field of sets generated by Borel sets under continuous images
and complements, the continuum problem has been resolved by the unexpected
influence of the existence of very large infinite cardinalities. This, in turn, has
completed the axiomatization of Second Order Number Theory.

Akihiro Kanamori and W. Hugh Woodin



Egor Ivanovich Zolotarev (1847––1878)

The scientific career of Egor Ivanovich Zolotarev lasted for only ten years,
but his record of achievements is impressive. He made essential contributions
to the divisibility theory of the Gaussian integers, to the theory of quadratic
forms with integral coefficients, and to approximation theory.

Zolotarev was born on March 31, 1847, in St. Petersburg into the family of
a watchmaker. In 1863, he graduated from Gymnasium No 5 in St. Petersburg
with a silver medal and began attending the
Faculty of Physics and Mathematics of St. Pe-
tersburg University as an auditor (he did not
become a full-time student until 1864 because
of his age).

Zolotarev had developed an interest in
mathematics as a gymnasium student under
the influence of his teachers, the renowned
Russian pedagogues Konstantin Krayevich and
Alexander Belyaev. The lectures and advice
of Alexander Korkin and Pafnuty Chebyshev
helped him develop his talent further.

In 1867, upon graduation with a candidate
degree1 (his thesis was About the Integration of
Gyroscope Equations) he was invited to con-
tinue his studies at the University in prepara-
tion for the examination for the master’s de-
gree. At the age of 21, he was given permission
to lecture on mathematics as a Privatdozent after the public defense of his pro
venia legendi thesis On One Question of Minima.

Chebyshev suggested the core problem of the thesis. Zolotarev generalized
the results obtained by his famous teacher and presented a solution to a broader
problem using elliptic functions. Zolotarev defended his doctoral thesis Theory
of Complex Integers with Application to Integral Calculus at St. Petersburg
University in 1874; his opponents were Chebyshev and Korkin. In his thesis,
Zolotarev solved, as Korkin put it, “... two problems at which the analysis had

1 At the time, the candidate degree was awarded to students graduating with honors.
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stopped”: he expanded Kummer’s theory of ideal numbers to complex numbers
and their application to integral calculus.

Zolotarev built, parallel to Dedekind and independently of him, the theory
of divisibility (and a proper definition!) for algebraic integers and their
factorization into ideal numbers (prime ideals), see the illustration below. The

Zolotarev had sent this paper to Henri Résal (the editor of the Liouville journal after
the death of Liouville) in 1876 but it was published only in 1880. Meanwhile, the works
of Dedekind were published (1879––1881) and mathematicians paid little attention to
the works of Zolotarev, however containing cases not covered by Dedekind’s works.
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starting point was the question of integrability in logarithms of the elliptic
differential ∫

(x+A)dx√
x(x− 1)(x−α)(x−β)

which is integrable as long as α and β are algebraic integers. This theory ex-
tended Kummer’s results for cyclotomic polynomials to arbitrary polynomials.

Korkin and Zolotarev found the minimal value of a quadratic form in four
variables as a function of the form determinant and identified in the process a
quadratic form associated with the famous E8 lattice.

While dealing with the function approximation problem, Zolotarev found
polynomials that are the least deviations from zero, with the first two of their
coefficients fixed.

Left: The first page of the paper about E8. Right: A page in a lithographic Zolotarev’s
lectures on mechanics.

It is worth mentioning that Zolotarev came up with one of the shortest
and most elegant proofs of the law of quadratic reciprocity. Zolotarev began
teaching at the age of 20, first at the St. Petersburg Construction School
(1867––1871), then as a Privatdozent (1869) and as a professor (1870––1878)
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at the St. Petersburg Institute of Railway Engineers. At the same time, he
also taught at St. Petersburg University as a Privatdozent (1868––1874, until
he was awarded a doctorate), then as a docent for two years (1874––1876), and
for further two years as a professor (1876––1878). He published textbooks on
analytic geometry, differential calculus, and analytical dynamics. Being an
excellent lecturer, Zolotarev was able to arouse interest in science among his
students and unerringly chose and strongly supported the most gifted of them.

Many of Zolotarev’s scientific writings opened new research directions for
his students and disciples. His findings in the theory of algebraic numbers were
further explored in the work of Yulian Sochocki, Dmitry Grave, and Nikolai
Chebotarev. Zolotarev’s work on the theory of quadratic forms (written both
in collaboration with Alexander Korkin and independently) led to research by
his talented disciples Vladimir and Andrei Markov, Ivan Ptashitsky, Georgy
Voronoy and, subsequently, by their students. Zolotarev’s approach to the
integrability of algebraic functions via ideal numbers was crucial for the
consolidation of the results obtained by Abel and Chebyshev in the field of
integrability of algebraic functions in a finite form.

The Russian academic community highly esteemed Zolotarev’s scientific. At
the age of 29, he was elected an adjunct member of the Academy of Sciences in
Applied Mathematics (1876) and, in two years, was named an extraordinary
academician. The works of the young scientist became known in Europe in
the mid-1870s after his trips to Berlin and Paris, where he met Weierstrass,
Neumann, Hermite, and Kummer and published several articles in Western
academic journals such as Mathematische Annalen, Nouvelles Annales, and
Journal de Mathématiques pures et appliquées. In addition, Zolotarev sought to
establish ties between scientists from different schools of thought both in Russia
and abroad. Alexander Korkin and Egor Zolotarev were the first Russians to
become members of the editorial staff of the review journal Jahrbuch über
die Fortschritte der Mathematik (from 1873), and their publications made the
achievements of Russian mathematicians known to their Western colleagues.

An accident led to the death of the young scientist. On the way to a family
country house he fell under a train and in a few days, on July 7, 1878, died
of septicemia (blood poisoning) at the age of 31. Zolotarev was buried in the
Mitrofanievskoye Cemetery in St. Petersburg (it was demolished in the XXth
century). He was an extraordinary person; his life was immersed in science
and, at the same time, burdened by family obligations, as he had to support
his mother and four younger siblings, three sisters and a brother. After his
father’s death, he became the breadwinner in the family, and every year, he
would rent a country house for them. When he died, his family was left with
no means of subsistence, so St. Petersburg University paid them an allowance
of 1000 roubles.

His talent, the depth of his mathematical discoveries, his wholehearted
devotion to science, and his tragic death resemble the life of Niels Henrik Abel,
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who also passed away as a young man. Egor Zolotarev, according to Charles
Hermite, was “a great mathematician whose work will remain in science.”

Natalia Lokot
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Egor Zolotarev and the Quadratic
Reciprocity Law

The quadratic reciprocity law belongs to the class of theorems that con-
tinue attracting mathematicians’ attention for centuries. Its particular cases,
obtained as experimental observations, were mentioned in the middle of the
17th century in Pierre Fermat notes and his correspondence with Frénicle. In
1775 Lagrange, and in 1783 Euler formulated the reciprocity law as a series of
propositions. The first incomplete proof was given by Legendre in 1788. He
also introduced the symbol that now bears his name1, and stated the theorem
in its modern form (1798). Actually, even the name “quadratic reciprocity law”
was also proposed by Legendre. The first complete proof was published by Carl
Friedrich Gauss in 1801 [2]. The mathematical heritage of Gauss contains at
least eight different proofs.

The quadratic reciprocity law served as the starting point for many gen-
eralizations. In modern mathematics one can find Eisenstein’s and Weyl’s
reciprocity laws, power reciprocity laws, and many others. A whole branch of
number theory — class field theory — grown from the same root. Over the past
two centuries, numerous proofs of the classical law have continued to emerge.

The book [3], which seems to be the most complete subject guide, mentions
more than three hundred proofs. The last of them had appeared just a year
before the book was published. Certainly, not all of these proofs present
fundamentally new ideas. Many are merely kind of variations on a theme.

In 1872, Egor Zolotarev published a proof [4], in which the connection
between the quadratic residue symbol and permutations was explicitly used
for the first time. In the list of proofs from [3, pp. 132––139] it is placed at
number 49. Since that time, as can be seen from the same list, at least twelve
proofs using this idea of Zolotarev have been published.

As we will see below, Zolotarev’s principal lemma is equivalent to Gauss’
lemma from his third proof (1808) [5]. However, Zolotarev’s approach makes
the proof more intuitive. Another its advantage is that the proof can be
generalized without any trouble to the case of finite fields.

Let us recall to the reader what, actually, we are talking about. Let us
first fix some notation. All mentioned numbers are assumed to be integers.

1 This historical fact breaks Stigler’s eponymy law [1], also well known as Arnold’s
principle.
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Letters p and q always denote odd primes. We will also frequently denote
p− 1

2
by ¯̄p, and so on. The complete modulo p non-zero residue system is

assumed to consist of the numbers {1, . . . , p− 1}, the half residue system — of
the numbers {1, 2, . . . , ¯̄p}. Below, speaking of residue systems, we will usually
omit the word “non-zero”, since the class 0 barely participates in our reasoning.

The two-term quadratic congruence x2≡ a(mod p) for (a, p) = 1 plays the

key role in modular arithmetic. The Legendre symbol
(
a

p

)
takes values ±1

depending on the solvability of this congruence. In these cases, we will call the
number a a quadratic residue or nonresidue modulo p. Formally extending the

symbol at zero by the relation
(

0

p

)
= 0, we obtain a character on the complete

modulo p residue system.
Strictly speaking, the quadratic reciprocity law is the identity(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

However, in books, next to this statement one can usually find the calculation

of symbols
(−1

p

)
and

(
2

p

)
as well as the proof of the symbol multiplicativity

property
(
a

p

)(
b

p

)
=

(
ab

p

)
. The practical significance of these statements is

that they enable us to calculate the Legendre symbol easily using an algorithm
similar in structure and efficiency to the Euclidian algorithm. We will discuss
these properties altogether, calling them collectively the quadratic reciprocity
law.

The path of proof followed by Zolotarev naturally breaks down into several
steps. We give the reader different variants of proofs for the key statements.
Thus, by choosing the preferred method at each stage, one can get many proofs
of the reciprocity law, including the original proof of Zolotarev.

Let us start with the well-known Euler criterion.

Proposition. For a such that (a, p) = 1, the relation
(
a

p

)
≡ a p−1

2 (mod p) holds.

Proof. Every non-zero modulo p residue satisfies either the congruence
a ¯̄p ≡ 1(mod p) or a ¯̄p ≡ −1(mod p). This is obvious from Fermat’s little
theorem and the factorization ap−1− 1 = (a ¯̄p− 1)(a ¯̄p + 1). Since each of these
congruences has at most ¯̄p solutions (actually, exactly ¯̄p), it suffices to verify
that every quadratic residue a satisfies the congruence a ¯̄p≡ 1(mod p). Namely,
let a≡ b2. Then, a ¯̄p≡ bp−1≡ 1(mod p).

The Euler statement also easily follows from the fact that the multiplicative
group of p residues is cyclic.
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Proof 2. Let us fix a primitive root g. Obviously, every quadratic residue is
equal to an even, and every quadratic non-residue to an odd power of g. If a is a
quadratic residue, the number A= a ¯̄p = g2k ¯̄p = gk(p−1) satisfies the congruence
A≡ 1. Assume now that a is a quadratic non-residue. The congruence A≡ 1
would immediately imply that p− 1 is a divisor of k ¯̄p for odd k, leading to
contradiction. Since A2≡ 1, the only case left is A≡−1.

Since the numbers a and p are coprime, the transformation x 7→ ax makes
a permutation (bijection) σa on the complete modulo p residue system.

Lemma (Zolotarev). The Legendre symbol
(
a

p

)
equals to the sign2 of the

permutation σa.

Proof. Consider the product

P (a) =
∏

1≤i<j≤p−1

(aj− ai) mod p.

The expressions P (1) and P (a) are different only by the order of factors and,
possibly, by their signs. One can easily see that every transposition changes
the product sign. This implies the equality signσa =P (a)/P (1). On the other
hand, the products P (1) and P (a) are different by the factor

a
(p−2)(p−1)

2 ≡ ap−1a
(p−2)(p−1)

2 = a
p(p−1)

2 ≡ a ¯̄p ≡
(
a

p

)
that completes the proof.

Proof 2. Again, the alternative proof of the lemma is based on the existence
of a primitive root g modulo p. Indeed, multiplying all terms of the sequence
of powers (g0, g1, . . . , gp−2) by gk leads to its cyclic shift by k. Since p− 1 is
even, the sign of the obtained permutation3 coincides with (−1)k.

Remark. For an arbitrary (not necessarily prime) integer m and a coprime

number a, one can define the symbol
(
a

m

)
as a sign of the permutation

x 7→ ax of the complete modulo m residue system. Checking, with the help of
Zolotarev’s lemma, the necessary list of properties, one can show [6] that this
new symbol coincides with the classical Jacobi symbol. In a similar way one
obtains an analogue of Zolotarev’s lemma for finite fields.

The following properties are immediate consequences of the lemma:

•
(−1

p

)
= (−1)

p−1
2 ;

2 Let us recall that an inversion in a permutation σ is a pair σ(i)>σ(j) such that i < j.
Minus one to the power of the number of inversions in the permutation σ is called its sign.
Permutations bearing sign +/− are usually called even/odd.

3 This permutation is conjugated in the symmetric group to the permutation from
Zolotarev’s lemma. Hence, they have the same signs.
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•
(

2

p

)
= (−1)

p2−1
8 .

The first equality and the multiplicativity property of the Legendre
symbol directly follow from the Euler formula. Let us look at the sec-
ond one. Compute the sign of corresponding Zolotarev’s permutation
(2, 4, . . . , p− 1, 1, 3, . . . , p− 2).

All inversions in this permutation are only between odd-even pairs of
numbers. The number 2k+ 1 totally participates in ¯̄p− k inversions. Adding

all of them, we get the total number of inversions 1
2

¯̄p(¯̄p + 1) =
p2− 1

8
that

calculates the desired symbol.
Now, we look at the transformation x 7→ ax from a slightly different point

of view.
Let a act by multiplication on the modulo p half residue system

{1, 2, . . . , ¯̄p}. Every number ax can be then written as ±y, where 1≤ y≤ ¯̄p.
As a result, we again obtain the half-system supplied with plus/minus signs.
Denote the number of minus signs by µa. The following statement holds.

Lemma (Gauss’s lemma).
(
a

p

)
= (−1)µa, provided that (a, p) = 1.

Proof. Let us consider the products
∏ ¯̄p
x=1 x and

∏ ¯̄p
x=1 ax. As we have already

seen, these products (modulo p) are different only by the sign (−1)µa . On the

other hand, they differ by the factor a ¯̄p≡
(
a

p

)
(mod p).

It is easy to show the equivalence of Gauss’ and Zolotarev’s lemmas. We
call a (p − 1)-permutation σ mirror if for any k satisfying the inequality
1≤ k ≤ ¯̄p the conditions σ(k)≤ ¯̄p and σ(k) + σ(p− k) = p are fulfilled. Such
a permutation is always even, since the numbers lying in its different halves
make no inversions, and inversions of σ(i) and σ(j) correspond one-to-one to
the inversions of σ(p− i) and σ(p− j). Consider the Zolotarev permutation
(a, 2a, . . . , (p− 1)a). Note that since ka+ (p− k)a≡ 0(mod p), to make this
permutation mirror, it is necessary to transpose all the elements in the pairs
(ka, (p− k)a) where the inversion appears. But we have exactly µa such pairs.
Therefore, the sign of the permutation x 7→ ax equals to (−1)µa .

Now, we pass to the proof of the quadratic reciprocity law.

Theorem. Let p and q be odd primes. Then, the following equality holds.(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. Consider the set M =Zp ×Zq and construct three bijections between
M and the interval set {0, 1, . . . , pq− 1}.
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One can visualize these bijections as filling the p× q matrix4 with numbers
from 0 to pq− 1 in three different ways
• by rows: Rij = qi+ j;

• by columns: Cij = i+ pj;

• and diagonally:

{
Dij ≡ i(mod p),

Dij ≡ j(mod q).

The last method gives us a bijection by the Chinese Remainder theorem.
We will denote by τRD the permutation taking the arrangement R to D,

and so on. Obviously,
τRC = τDC ◦ τRD. (∗)

Surprisingly, this naive equality already encodes the proof of the reciprocity
law. Really, let us compute the signs of all the permutations involved. The
transformation τRD moves the entry (i, j) to (qi+ j, j) and, therefore, makes
the column index invariant.

The permutation in the column number k is the cyclic k-shift of the 0th
column permutation i 7→ qi. By the oddness of p, signs of all the column

permutations are the same. By Zolotarev’s lemma, they equal to
(
q

p

)
.

Hence, sign τRD =

(
q

p

)q
=

(
q

p

)
. Similarly, sign τDC =

(
p

q

)
.

Applying the function sign to (∗), we obtain the equality:(
p

q

)(
q

p

)
= sign τRC .

To complete the proof, it remains to calculate the sign of the permutation
τRC . The general principle shall be clear from the example below.5 Consider
the transformation of the 3× 5-matrix from row to column arrangement. 0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

 τRC−→

0 3 6 9 12

1 4 7 10 13

2 5 8 11 14


Clearly, under such a transformation, each entry is transposed with ones, which
are below and to the left of it in the original matrix. (In the matrix above, we
marked the inversions for the element 8.) Thus, the total number of inversions
for the p× q matrix is

q−1∑
m=0

p−1∑
n=0

mn =

(
q−1∑
m=1

m

)(
p−1∑
n=1

n

)
≡ p− 1

2
q− 1

2
(mod 2).

4 We number the rows and columns of the matrix starting from zero.
5 In [7] one can find a nice interpretation of this calculation as a card trick.
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The resulting equality sign τCR = (−1)
p−1

2
q−1

2 proves the quadratic reci-
procity law.

Proof 2. The following argument is due to Rousseau [8] and is a deep modifi-
cation of Gauss’ fifth proof. Denote by Z∗m the multiplicative group of modulo
m reduced residues. Compute the product π of elements in the factor group6

(Z∗p × Z∗q)/Z2 in two different ways. As a set of coset representatives, one
can take the set of pairs {(i, j)| i= 1, . . . , ¯̄p, j = 1, . . . , q − 1}. Obviously,
the product of all elements in the factor group is equal to ((¯̄p!)q−1, (q− 1)! ¯̄p).
Taking into account the identity (¯̄p!)2 = (−1) ¯̄p(p− 1)!, one gets:

π = ((−1) ¯̄p ¯̄q(p− 1)! ¯̄q, (q− 1)! ¯̄p). (∗∗)
On the other hand, using the isomorphism Z∗pq 'Z∗p×Z∗q (Chinese Remainder
Theorem), one can choose the complete set of coset representatives as the
image in the group Z∗pq of integers from 1 to 1

2
(pq − 1) coprime to pq. Let

us first calculate the product of such integers. It is obviously equal
(pq−1

2 )!

p ¯̄q ¯̄q!q ¯̄p ¯̄p!
.

Reducing the fraction by modules p and q, correspondingly, we get:

π =

(
(p− 1)! ¯̄q

q ¯̄p ,
(q− 1)! ¯̄p

p ¯̄q

)
.

Thus, taking into account the Euler formula:

π =

(
(p− 1)! ¯̄q

(
q

p

)
, (q− 1)! ¯̄p

(
p

q

))
.

Comparing the obtained expression with (∗∗), we immediately get the
reciprocity law.

Remark. Applying Wilson’s theorem to the latter formula, it is not difficult to
prove the following beautiful, although absolutely useless formula:

π =

((−q
p

)
,

(−p
q

))
.

So far, all the considered arguments derived the reciprocity law either
from Zolotarev’s lemma, or directly from the Euler criterion. In conclusion,
we present, for comparison, a proof based on Gauss’ lemma. The following
beautiful argument is due, with some modifications, to Eisenstein [9].

We start from the statement of the lemma:
(
a

p

)
= (−1)µa . Let us note that

the residue ax arising in the course of the proof gets a minus sign if and only
if
{
ax
p

}
> 1

2
. If this inequality is satisfied, the integer

[
2ax
p

]
− 2
[
ax
p

]
is equal

6 Here the subgroup Z2 is {(1, 1), (−1, −1)}.
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to one, otherwise it is zero. Therefore,

µa =

¯̄p∑
x=1

([
2ax
p

]
− 2

[
ax
p

])
≡

¯̄p∑
x=1

[
2ax
p

]
(mod 2). (∗ ∗ ∗)

Assume that a is odd and compute the Legendre symbol(
2a

p

)
=

(
2a+ 2p

p

)
=

(
4a+p

2

p

)
=

(a+p
2

p

)
.

By Gauss’ lemma:
(a+p

2

p

)
= (−1)

µa+p
2 , and by (∗ ∗ ∗), we have:

µa+p
2
≡

¯̄p∑
x=1

[
(a+ p)x

p

]
=

¯̄p∑
x=1

[
ax
p

]
+
p2− 1

8
(mod 2).

Taking a= 1 into the last equalities, we are reproving that
(

2

p

)
= (−1)

p2−1
8 .

Using this fact and the multiplicativity of the Legendre symbol, we get:

µa ≡
¯̄p∑

x=1

[
ax
p

]
(mod 2). (1)

Thus, to prove the quadratic reciprocity law, it suffices to verify that for
odd primes p and q we have the equality:

¯̄p∑
x=1

[
qx
p

]
+

¯̄q∑
y=1

[
py
q

]
=

p− 1
2

q− 1
2
.

The proof of the latter is obvious from the picture below (p= 11, q= 17):

p− 1
2

q− 1
2

px
=q
y

∑ ¯̄p
y=1[ qy

p
]

∑ ¯̄q
x=1[ px

q
]
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Unfortunately, the limited volume of the text does not allow us to tell more
about the various brilliant ideas used in the proofs of the quadratic reciprocity
law. For more details and references, we refer the reader to the book [3].

Serge Yagunov
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Nikolay Yakovlevich Sonin (1849––1915)

Nikolay Sonin is known for his achievements in the theory of orthogonal
polynomials and the theory of cylinder functions. He devoted much of his time
to teaching mathematics and was a member of the International Commission
on Mathematical Education organized by Felix Klein.

Nikolay Sonin was the descendant of an old noble family from the Tula
province. He was born in Tula, but was moved to Moscow at an early age,

graduated from the 4th Moscow gymnasium
(1865) and then from the physics and math-
ematics faculty of Moscow University with a
candidate’s degree1 (1869) and was left for two
years at university “preparation for professor-
ship.” 2

Both his master’s and doctor’s theses, On the
Infinite Series Expansion of Functions (1871)
and On the Integration of Second Order Partial
Differential Equations (1874), respectively, were
defended at Moscow University. Sonin started
his teaching career in 1871 with secondary-
school-level courses for women that were taught
at the Second Moscow male gymnasium and
based on the curriculum for men’s secondary
schools.3 In 1872, he moved to the University of

Warsaw, where he worked for 20 years, first as Associate Professor (1872––1877),
then as Extraordinary4 (1877) and Ordinary5 (1879) Professor and was Dean
of the Physics and Mathematics Faculty for six years.

After he was elected a corresponding member (1891) and then a full member
of the St. Petersburg Academy of Sciences, Nikolay Sonin lived and worked

1 At the time, the candidate’s degree was awarded to students who graduated with honors.
2 The students chosen to stay at the department for a “preparation for a professorship,”

roughly equivalent to a Ph.D., were those chosen by a professor for a merit scholarship. It
was considered a mark of distinction.

3 The Lyubyansky secondary school courses for women were operational from 1869 to
1886 in Moscow.

4 Extraordinary professorship was a salaried position, but not as a departmental chair.
5 Ordinary professorship was a salaried position as the departmental chair.
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The first page of Etudes in Elementary Mathematics (1913), Sonin (under the
pseudonym of N. Ninosa, the anadrom of “Sonin”), [5].

in St. Petersburg. He taught higher education courses for women6 and at
St. Petersburg University, and took an active part in the daily work of the
Academy. Together with Andrei Markov, he edited the collected works of
Pafnuty Chebyshev and prepared them for publication. From 1899 onwards,
he was engaged in administrative activities as a trustee of the St. Petersburg
school district, and from 1901 he was the chairman of the Academic Committee
of the Ministry of Public Education. Sonin was characterized as a supporter
of strict legality and an opponent of the student movement.

Sonin’s scientific interests were influenced by the St. Petersburg school of
mathematics and were concentrated on the study of various special functions
and their application to problems in mathematical analysis. For example,
his master’s thesis was about the joint generalization of the results obtained

6 The Bestuzhev Courses in St. Petersburg were the most important providers of higher
education for women in Imperial Russia.
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by Eduard Heine and Carl Neumann concerning the expansion of fractions
1/(a − z) by spherical harmonics and cylinder functions. For his doctoral
dissertation, which was translated into German 23 years later by Friedrich
Engel, Sonin first solved the problem of the existence of the general integral
of the first order, and put in final form the method of integration proposed by
Jean Gaston Darboux. Thanks to the recommendations of Pafnuty Chebyshev,
Vasily Imshenetsky, and Andrei Markov, Prof. Sonin was awarded the Viktor
Bunyakovsky prize for seven works written in 1886––1889.

In total, Sonin wrote about 50 papers, a feat that made him famous
in Russia and Western Europe. His main results were in the theory of
orthogonal polynomials, the Bernoulli polynomials, and the theory of cylinder
functions. His memoir On Some Inequalities Concerning Definite Integrals
(1898) is of particular importance. In it, Sonin proposed a new orthogonal
basis (Sonin–Laguerre) with a parameter a, different from the bases already
known (Legendre, Laguerre, Dirichlet, Jacobi, where a= 1), and developed a
method for the orthogonalization of a system of functions.

Nikolay Sonin’s studies have not lost their scientific importance. The main
ones have been republished in Studies on Cylindrical Functions and Special
Polynomials (1954), prepared by Naum Akhiezer. In addition to the articles
published by Sonin in Russian, the collection includes hard-to-find translations
of his notes published in foreign journals, as well as detailed comments and
an article by Akhiezer entitled Sonin’s Works on Approximation of Definite
Integrals.

Sonin’s article on the history of mathematics, “Johann Bernoulli’s Series”
(“Рядъ Ивана Бернулли”, [4]), clarifying the role of Johann Bernoulli in the
development of the series named after Taylor, attracts attention. Sonin pre-
sented arguments for the precedence of Johann Bernoulli’s research over that of
Taylor and McLaren. In addition, he wrote several biographical essays, notes,
and speeches on Viktor Bunyakovsky, Vasily Imchenetsky, Pafnuty Chebyshev,
Andrei Markov, Karl Weierstrass, Charles Hermite, Alexander Lyapunov,
Ernst Leonard Lindelöf, Vito Volterra, Vladimir Steklov, and others.

As chairman of the Scientific Committee of the Ministry of Public Education
and a member of the Council to the Minister of Education, Sonin organized
the review of textbooks and auxiliary books for schools, recruiting venerable
scholars and the best teachers, and he wrote reviews of many textbooks
himself. It was to help schools that he published, under the pseudonym of
N. Ninosa, his last work Etudes in Elementary Mathematics (1913), which was
comprehensible even to high school students, see Figure 24. It contains an
algorithm developed by the author for calculating irrational roots of positive
numbers, a new way to derive Newton’s Binomial, and a simple method for
calculating natural logarithms.

Felix Klein chose to send a letter to Sonin, on 19 January 1909, requesting
to take part in the work of the International Commission on Mathematical
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Education. Sonin initiated the creation of such a commission in Russia, which
was composed of, besides Sonin (who was an academician), of Professor Boris
Koyalovich, and the director of the 2nd St. Petersburg Scientific College7
Karl Vogt. The commission’s first work was a translation from French of
the book The International Commission for the Teaching of Mathematics: A
Preliminary Report on the Organization of the Commission and Its General
Plan of Work, it was published in St. Petersburg in 1909. Later, the commission
was joined by Professors Konstantin Posse and Dmitry Sintsov. Here is what
is said about the activities of this commission in [3]:

The National Commission met regularly; leading mathematicians were
involved, who represented different stages of education and different
types of educational institutions of the largest cities in the country
(universities, scientific colleges,8 cadet corps, etc.), such as K.A. Posse,
S.P. Glazenap, M.G. Popruzhenko, V.G. Alekseev and others. Reports
on the state of mathematics teaching in Russia were collected and pub-
lished in European languages abroad. The reports of this commission,
and the reports of all the countries involved, were presented at the V
International Congress of Mathematicians in Cambridge in 1912.

Nikolay Sonin died of stomach cancer at the age of 66 after a long illness
and was buried in the Smolensk cemetery in St. Petersburg. He was not a
citizen of St. Petersburg by birth or education, but, having become one of the
outstanding mathematicians of the late XIXth–early XXth centuries, he was
very close to the St. Petersburg school of mathematics in the subject matter
and character of his research.

Natalia Lokot
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Sofia Vasilyevna Kovalevskaya (1850––1891)

Kovalevskaya is known for the Cauchy–Kovalevskaya theorem on the ex-
istence of solutions to differential equations. She wrote important and well-
known works on Saturn’s rings, on Abelian integrals, and on the rotation of
a heavy body around a fixed point. The latter work, the last integrable case
(Euler and Lagrange found the first and second), won the Prix Bordin of the

French Academy of Sciences in 1888 and used
the recently developed theory of theta functions
to solve hyperelliptic integrals.

Kovalevskaya, being deeply involved in
the feminist currents of late nineteenth-cen-
tury Russian nihilism, wrote a semi-autobio-
graphical novel, Nihilist Girl, as well as a mem-
oir, A Russian Childhood.

Sofia Kovalevskaya was the first woman to
obtain a doctorate in mathematics and the first
woman to be appointed to a full professorship
in Northern Europe. She was the first woman
to be an editor of a mathematical journal (Acta
Mathematica).

Sofia Vasilyevna Kovalevskaya was born in
Moscow, the second daughter of Vasily Vasilyevich Korvin–Krukovsky, a
general in the Russian army, and his wife Yelizaveta Fedorovna Schubert, who
was twenty years his junior.

As was usual in well-to-do families of the nobility, the children’s education
began with an English governess and continued with private tutors. Sofia
became fascinated with mathematics at an early age. She listened eagerly
to the conversations between her father and uncle on mathematical subjects,
never mind that she could not understand what they were discussing in detail.
It has been reported that her curiosity was piqued by the temporary wallpaper
in the children’s nursery (in the absence of ordinary wallpaper), with pages
from the manuscript of calculus lectures given by Mikhail Ostrogradsky.

Eventually, when one of her tutors initiated systematic instruction in
mathematics, Sofia neglected all her other subjects, which led her father to
forbid her from studying mathematics. But Sofia got hold of an algebra book,
which she read secretly at night. One day, their neighbor, a physics professor
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named Nikolai Nikanorovich Tyrtov, gave the family a copy of his new physics
textbook. The twelve-year-old Sofia began to read it. She had trouble with
the formulas involving trigonometric functions. However, she persisted and
figured out their meaning from the context. Her neighbor was stunned when
she asked him questions about his book that suggested that she had actually
understood what she had read. Tyrtow attempted to convince the girl’s father
that his daughter must have further instruction in mathematics. But several
years passed before the father allowed his daughter to study the subject again.
If she were to obtain instruction in “higher” mathematics, she would have to
leave home. But an unmarried woman could not do so without her father’s
consent. Since he was unwilling to give such consent, there was only one way
out: marriage.

Shortly before her eighteenth birthday, Sofia married Vladimir Kovalevski.
It was to be a “fictitious marriage” though, just for the sake of appearances,
so that Sofia could pursue her interests. The
groom was one of the so-called nihilists, who
were active in agitating for the rights of women
to obtain an education and saw it a point
of honor to “free Russia’s daughters.” The
unsuspecting parents accepted the budding pa-
leontologist as their daughter’s husband.

The following year, the newlyweds traveled
to Heidelberg, so that Sofia Kovalevskaya could
take up studies in mathematics and the natural
sciences. However, women could not officially
enroll in German universities at the time. Af-
ter many futile attempts, she was finally al-
lowed to petition individual lecturers to “audit”
their lectures. The professors, including Leo
Königsberger (a student of Karl Weierstrass),
Hermann Helmholtz, and Gustav Robert Kirchhoff, quickly recognized the
young woman’s exceptional talent. After three semesters, she moved to Berlin,
following the recommendation of Königsberger, in order to continue her studies
under the supervision of Karl Weierstrass himself, whose lectures on analysis
had become renowned for their intellectual rigor.

At first, Weierstrass ignored the letters of recommendation that she pro-
duced, but instead gave the “supplicant” a problem that, to his great surprise,
she was quickly able to solve. Since the university, despite Weierstrass’s
petition, would not give Sofia permission even just to audit the lectures,
Weierstrass saw only one way to help: he taught her three times a week in
private sessions.

In 1874, Sofia Vasilyevna Kovalevskaya completed three papers that Weier-
strass judged sufficient to grant a doctoral degree. The first paper brought
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her research on the solvability of partial differential equations to a provisional
conclusion. In the second paper, Kovalevskaya dealt with the so-called Abelian
integrals (named in honor of Niels Henrik Abel) and provided methods for
reducing these integrals to simpler ones. In the third paper, she improved upon
a theory of Pierre Simon de Laplace on the physics of the rings of Saturn.

Weierstrass had a hard time finding a university in Germany that would
recognize these works as the basis for granting a doctoral degree. Finally,
the University of Göttingen expressed its willingness to do so and granted
Kovalevskaya the title of doctor in absentia,
with the addition of summa cum laude. In sup-
port of his application, Weierstrass went so far
as to cite the great Carl Friedrich Gauss, who
in 1837 expressed his regret that German uni-
versities had failed to grant the mathematician
Sophie Germain a doctorate during her lifetime.
It was many years later before women were
granted the right and opportunity to pursue
scientific work. For example, the physician and
neurologist Paul Möbius insisted that there was
no originality in the ideas and scientific work of
Sofia Kovalevskaya (this judgment appeared in
the chapter “On Women in Mathematics” in a
book that Möbius published in 1900 with the
title On the Natural Aptitude for Mathematics).
When an error was found in one of Kovalevskaya’s later articles on the
refraction of light, many voices chimed in to claim that such an error could
never have been made by a man. In fact, the cause of the error in that
article was that she had adopted one of the experimental conditions of another
scientist (a man) without having verified the specifics of his work.

Despite her academic title and a number of letters of recommendation from
her sponsor, Weierstrass was unable to find a university position for her. This
series of rejections and disappointments plunged her into a six-year emotional
crisis, in which she ceased work in mathematics. She returned to Russia,
where her academic title, obtained in Germany, was not recognized. She was
considered to be qualified at most as a teacher of young girls. What had
begun as a fictitious marriage eventually became a real one. She gave birth to
a daughter, but then later separated from her husband. His suicide in 1883 first
came out as a shock, but it also represented a liberation for her. She returned
to the study of mathematics with great intensity to displace her feelings of
guilt. As a widow, she was allowed to travel without restrictions, which earlier
would have been possible only with the express permission of her father, and
later her husband — even after their separation.
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Bazaar in the Stockholm Stock Exchange in 1885. Calla Curmann, Ann-Charlotte
Edgren Leffler, Sofia Kovalevskaya, Signe Mittag-Leffler, Anna Scholander, Ellen Key
and Alfhild Agrell.

A breakthrough arrived for Kovalevskaya when Magnus Gösta Mittag-
Leffler, the first professor of mathematics appointed at the newly founded
University of Stockholm, a student of Charles Hermite (Paris) and Karl
Weierstrass (Berlin), created a five-year position for her as a lecturer in
mathematics in Stockholm.

During her first year, she lectured in German but eventually learned
enough Swedish to lecture in that language. In 1889, she finally obtained
a professorship in mathematics, being the first woman to do so. She gave
lectures on mathematical analysis, was an editor of a mathematical journal,
and organized international mathematical conferences.

In 1886, she was awarded the Prix Bordin of the French Academy of Sci-
ences, having won a competition to which she had submitted her contribution
anonymously. Judging the quality of her work to be unusually high, the jury
raised the awarded prize money from 3000 to 5000 francs. In 1889, she won
the prize of the Swedish Academy, and following the personal intervention of
Pafnuty Lvovich Chebyshev, she was named a corresponding member of the
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Russian Academy of Sciences, which in conservative tsarist Russia was possible
only after a modification in the university statutes. Amid a new and intensive
creative period, Sofia Kovalevskaya died of a lung infection that had not been
treated in a timely manner.

Heinz Klaus Strick
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English version first published by the European Mathematical Society
2013 (Translation by David Kramer), now linked to MacTutor History of
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Reduction of Abelian integrals
and Kowalevski top

The level surfaces defined by the four constants of the Kowalevski1 top
motion can be completed into a reducible Abelian variety. We suppose that
Kowalevski used this fact in her original calculations.

As early as 1832 Legendre had shown that the two hyperelliptic integrals∫
dx√

x(1−x2)(1−κ2x2)
and

∫
xdx√

x(1−x2)(1−κ2x2)

are each expressible in terms of two elliptic integrals of the 1-st kind by means
of a quadratic transformation. Abel singled out the first kind integrals in
his Paris mémoire by the condition that the corresponding Abelian sum is a
constant; this is equivalent to the Abelian integral being a locally bounded
function of the upper limit of integration.

Immediately after, Jacobi pointed out that this property holds for integrals
on the hyperelliptic curve defined by the equation

C : y2 = R(x) = x(1−x)(1−κλx)(1 +κx)(1 +λx) ,

which is isomorphic to a curve with an affine equation

C : y2 = x6− s1x
4 + s2x

2− 1 , (1)

having elliptic involutions σ1,2, see [1]. The quotients Ei =C/<σi> are the
elliptic curves

E1 : y2 = x3− s1x
2 + s2x− 1 and E2 : y2 = x(x3− s1x

2 + s2x− 1) (2)

and the Jacobian of C decomposes up to isogeny as Jac(C)'E1×E2. Now,
such elliptic fibrations of reducible abelian varieties are studied extensively due
to the promising post-quantum cryptography applications [8].

In a more general case, the reduction of abelian integrals had been investi-
gated by Picard, Weierstrass and Poincaré, while the genus g = 3 hyperelliptic
curves have been treated in detail by Kowalevski [5] in 1884 concerning the
unpublished Weierstrass lectures, which were of great value in those years, see
Pokrovsky’s book [7]:

1 Kovalevskaya preferred the spelling “Kowalevski” in her publications and letters.



136 Reduction of Abelian integrals and Kowalevski top

The printed memoirs of Weierstrass, due to their brevity and incom-
plete proof, give only a vague idea of his theory, which, however,
is perfectly developed. Last winter in Berlin, we managed to get
acquainted with one of the Professor’s handwritten courses.

As a result, both then and now, references to these Weierstrass theorems lead
only to the Kowalevski paper [5], for instance see Poincaré’s corresponcence:

Mon attention fut de nouveau attirée sur cette question par un
Mémoire deMme Kowalevski, où se trouvaient cités deux théorèmes de
M. Weierstraß, sur la réduction des intégrales abéliennes aux intégrales
elliptiques.2

In today’s geometric language, S. Kowalevski studied hyperelliptic curves of
genus g = 3 whose Jacobians are isogenic to a product of elliptic curves. Such
genus g = 3 hyperelliptic curves together with the corresponding two elliptic
curves always appear in the modern treatment of the Kowalevski rigid body
motion [2, 3, 9].

The rotation of a rigid body about a fixed point in a gravitational field is
described in the moving frame by the Euler–Poisson equations

˙̀ = `× ∂H
∂`

+ g× ∂H
∂g

, ġ = g× ∂H
∂`

, (3)

where `= (`1, `2, `3) is the angular momentum vector, g = (g1, g2, g3) is the
unit vector in the direction of gravity, H denotes the Hamilton function and
x× y means the cross product of two vectors.

In 1889, S. Kowalevski [6] solved the following problem: find all rigid bodies,
rotating about a fixed point in the presence of gravity, such that the equations
of motion (3) are integrable in the sense of the Cauchy–Kowalevski theorem
[4]. The latter means that the system admits solutions, expressible as the
Laurent series in time, which contain a number of free parameters equal to the
number of degrees of freedom minus one. This condition leads to the Euler
and Lagrange tops, and to the Kowalevski top, which is a solid body rotating
about a fixed point with the Hamiltonian

H = `21 + `22 + 2`23− 2bg1, b ∈ R
and second integral of motion

K = (`21 + `22)2 + 4b
(
g1(`21− `22) + 2g2`1`2

)
+ 4b2(g2

1 + g2
2) ,

which are in the involution, i.e., their Poisson brackets vanish identically

{H, K} = 0.

The Poisson brackets on the Euclidean group algebra e(3)∗ are defined by{
`i , `j

}
= εijk`k ,

{
`i , gj

}
= εijkgk .

{
gi , gj

}
= 0 ,

2 “My attention was attracted anew to this problem by a memoir of Mme Kowalevski,
where two theorems of M. Weierstraß are mentioned.”
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where εijk is the skew-symmetric tensor. These brackets have two Casimir
functions

c1 = g2
1 + g2

2 + g2
3 , c2 = g1`1 + g2`2 + g3`3 .

Fixing their values, one gets a generic symplectic leaf of e(3)∗ which is a four-
dimensional symplectic manifold.

Solving the Euler–Poisson equations S. Kowalevski introduces variables

z1,2 = `1± i`2

such that

H = − ż1ż2 +R(z1, z2)

(z1− z2)2
, K =

(
ż2

1 −R(z1, z1)
)(
ż2

2 −R(z2, z2)
)

(z1− z2)4
,

where R(z1, z2) is equal to

R(z1, z2) = z2
1z

2
2 − (z2

1 + z2
2)H − 4b(z1 + z2)c2− 4b2c1 +K .

To remove cross-terms ż1ż2 she uses group operations for the divisor
D= (z1, Z1) + (z2, Z2)

dz1

Z1
+
dz2

Z2
=

dw1

W1
,

dz1

Z1
− dz2

Z2
=

dw2

W2

on the elliptic curve

E : Z2 = R(z, z) = z4− 2z2H − 8bc2z− 4b2c1 +K .

Simultaneously she reduces this equation for E to the short Weierstrass form

E : W 2 = 4w3− g2w− g3

and obtains standard Abel’s differential equations on a hyperelliptic curve C.
The meaning of these calculations has been discussed by many authors and is
more or less clear, see [3, 10] and references within.

However, instead of solving these Abel’s equations, S. Kowalevski does an
additional transformation of variables

w1,2 → s1,2 +H/3 (4)

and obtains her famous variables of separation

s1,2 =
R(z1, z2)±

√
R(z1, z1)

√
R(z2, z2)

2(z1− z2)2
,

which also satisfy standard Abel’s equations
ṡ1√
P5(s1)

+
ṡ2√
P5(s2)

= 0 ,
s1ṡ1√
P5(s1)

+
s2ṡ2√
P5(s2)

= 1,

where

P5(s) = (4s2 + 4Hs+H2−K) (4s3 + 4Hs2 + (4b2c1 +H2−K)s+ 4b2c2
2)
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and which are in the involution {s1, s2}= 0 with respect to the Lie–Poisson
brackets on e∗(3).

Of course, S. Kowalevski never computed the Poisson brackets between the
variables s1,2, so her reason for the additional transformation of the variables
(4) is not known for sure. Moreover, we do not find any suitable discussion of
this transformation in the extensive list of papers devoted to the Kowalevski
top.

We can only suppose that S. Kowalevski reduces the elliptic curve E to the
form (2)

E : S2 = P3(s), P3(s) = 4s3 + 4Hs2 + (4b2c1 +H2−K)s+ 4b2c2
2 ,

which appeared in her investigation of reducible abelian integrals and reducible
abelian varieties, see [5].

Andrey Tsiganov
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Evgraf Stepanovich Fedorov (1853––1919)

Boris Delone, the renowned mathematician, placed Fedorov in the ranks
of the legendary Plato and Archimedes. Vladimir Vernadsky, a founder of
geochemistry, placed him in the same category as his great contemporaries
Mendeleev and Pavlov. Yet, unlike these household names, Fedorov is little
known outside his field and country. Who was he, you ask? I will try, in this
brief space, to sketch an answer.

Evgraf Stepanovich Fedorov was born in Orenburg, Russia in 1853; his
father was a military engineer. Soon after Evgraf’s birth, the family moved to
St. Petersburg, and he grew up there. It is
said that from his father he inherited a “sharp
disposition” and that his mother gave him a love
of reading and the habits of hard work.1

She also gave him a musical education and
taught him to knit lace-like tablecloths. The
tablecloths may have sparked his life-long inter-
est in patterns and geometry: at the age of ten,
he worked through his older brother’s geometry
textbook in two days. At sixteen, fascinated by
crystals and their geometry, he began writing
the first of his famous works, An Introduction to
the Study of Figures.

During the ten years that Evgraf worked on
the book, he explored first medicine and then
engineering as possible careers before deciding on mineralogy. In 1873, he met
his future wife, Ludmila Vasilievna Panyutina, a medical student from the
Urals. Her memoir, Our Everyday Life, Our Joys and Sorrows, is the primary
source for this and other biographical sketches of her husband.2 Evgraf’s other
extracurricular activities during that decade included revolutionary politics.
The “Land and Freedom” Party sent him abroad to forge connections with
revolutionaries in Belgium, France, and Germany; this no doubt enhanced his
foreign language skills. He also played a part in the dramatic escape of the

1 https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-
press-release/fyodorov-or-fedorove-evgraf-stepanovich/

2 L. V. Fedorova, Our Everyday Life, Our Joys and Sorrows (in Russian), Science Legacies
vol. 20, Nauka, 1992.

https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-release/fyodorov-or-fedorove-evgraf-stepanovich/
https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-release/fyodorov-or-fedorove-evgraf-stepanovich/
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anarchist Prince Peter Kropotkin from the prison of a St. Petersburg military
hospital. According to Fedorov’s family legend, he was the one who gave
Kropotkin the agreed-upon all-clear signal: a Schubert serenade on his violin.
Evgraf and Lyudmilla were married in 1880 and had two daughters and a son.

Medal, honoring the 100th anniversary
of Fedorov’s result on space groups.

The other side of the medal.

Also, in 1880, Fedorov, as we will call him from now on, enrolled in the
prestigious St. Petersburg Mining Institute. Founded in 1873, the Mining
Institute was Russia’s first technical college. Its attractions for students
included a library, a dining hall, and the right to hold meetings. Another was
the Institute’s splendid collection of minerals from all over Russia, initially
assembled on the order of Catherine the Great. Expanded since then by
donations from all over the world, the St. Petersburg Mining Museum became
(and is today) a hands-on resource for Mining Institute students, a world-class
scientific/industrial resource, and a leading St. Petersburg tourist destination.

In 1883, Fedorov completed his studies at the Institute, ranking first in his
class. That summer, he joined a geological mapping expedition in the northern
Urals, the first of many arduous expeditions he would conduct in that and other
regions of Russia.

Fedorov’s achievements during the decade of 1885 to 1895 would put him
on the world map of science. Beyond his complex, painstaking enumeration of
the 230 crystallographic groups, and the long-delayed publication of An Intro-
duction to the Study of Figures, he transformed the practice of mineralogy and
petrography. Fedorov believed that these crystallographic groups determined
the positions of molecules in crystals, though this was not widely accepted
at the time. He also believed that the inner structures of crystals could be
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deduced from their macroscopic properties, and devised tools for measuring
them. As Daniel Kile explains,3

The optical behavior in crystals varies with the direction of light travel
within the crystal, and measurement of optical properties has to be
carried out in specific orientations... Therefore, a great variety of
rotating devices have been designed to align crystals into a proper
orientation. The universal stage is certainly the most important in
such devices, and for more than half a century [i.e., in the pre-computer
era] it was considered essential for petrographic work. E.S. Fedorov
developed a four-axis universal stage in 1892 in response to the need
to characterize feldspar-group minerals, a major group of rock-forming
minerals. His universal stage, with independently tilting and rotating
axes, facilitated these measurements by allowing complete freedom to
orient crystallographic and optical planes in the sample.

The Fedorov stage received a prize at the 1893 International Exposition in
Chicago.

In 1895 Fedorov was appointed professor of geology at the Moscow Agri-
cultural Institute (now the Timiryazev Agricultural Academy); he continued
to lecture at the St. Petersburg Mining Institute as well. He also continued
leading summer expeditions, lecturing widely, and writing articles and books.
In 1896, he was elected to the Bavarian Academy of Sciences, an indication of
his growing international prestige and the first of several such honors. The
times were tumultuous, and Russia’s institutions of higher education were
not untouched by the unrest. Faced with demands for self-governance from
university and institute faculty and students, the tsar decreed that faculty
councils could elect their own rectors and assistant rectors, pending the
approval of relevant ministries, and that student discipline would be handled
by faculty disciplinary courts.4 In 1905, Fedorov became the Mining Institute’s
first elected rector.

Fedorov was re-elected rector in 1908, but his second term was terminated
by the Russian Minister of Internal Affairs. At issue was student financial aid.
The Mining Institute students had declared a strike in response to cuts to the
Institute’s financial aid budget. When the cuts were eliminated and the budget
restored, the Minister dismissed Fedorov from the rectorship.

A sad ending to a brilliant career? No, the story does not end there.
Fedorov’s love of fine literature lasted all his life; he would have disdained last-
minute plot twists devised to save the hero. Nevertheless, he lived to see his
crystal structure hypothesis corroborated, in principle if not in exact detail,

3 Daniel Kile, The Universal Stage: the past, present, and future of a mineralogical
research instrument, Geochemical News 140, June 2009.

4 Samuel D. Kassow, Students, Professors, and the State in Tsarist Russia, the University
of California Press, 1989.
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by just such a deus ex machina:5 the discovery of X-ray diffraction. (See
the next section “Fedorov and Geometry”) Fedorov was elected to the Soviet
Academy of Sciences in 1919, a few months before his death from pneumonia
during the privations of the Russian Civil War.

Although it is true that, a century later, Fedorov is not yet a household
name, Delone and Vernadsky did not exaggerate.

Marjorie Wikler Senechal

Additional materials to read: https://www.mdpi.com/2075-163X/10/2/181

5 Deus ex machina: A power, event, person, or thing that comes in the nick of time —
Oxford English Dictionary.

https://www.mdpi.com/2075-163X/10/2/181


E.S. Fedorov and Geometry

The mathematician B.N. Delone ranked Fedorov with the great geometers:

Tradition ascribes to Plato the discovery of the five regular convex
polyhedra, to Archimedes the thirteen convex semi-regular polyhedra,
to Kepler and Poinsot the four regular nonconvex solids, and Fedorov
found the five parallelohedra.

For crystallographers, the name “Fedorov” evokes the 230 crystallographic (or
space) groups and the Fedorov stage, a sophisticated device for measuring
crystals. But in Fedorov’s own eyes, these three pantheonic achievements
were stepping stones in his broader but quixotic quest to deduce the atomic
structures of crystals from their external shapes and properties.

An exhibit of mineral crystals and mining apparatus in the Mining Museum, St. Pe-
tersburg, Russia.
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How does the arrangement of their chemical subunits give rise to crystals’
symmetric, polyhedral, forms? Until the discovery of the X-ray diffraction in
1912, no one could say. But one could guess. The turn-of-the-19th-century
French mineralogist R.J. Haüy proposed that crystals are stacks of sub-visible
congruent bricks (see the illustration below).

R.J. Haüy’s drawing (1801) shows how crystal forms can be approximated by cube-like
bricks.

Haüy’s theory accounted for crystal shapes and symmetries, and more. Why
can crystals of the same species have different geometric forms? Because the
stacks of bricks can be completed in different ways! Why is the pentagonal
dodecahedral form of pyrite never quite regular? Because the vertices of
crystals have rational coordinates!

But what were these bricks supposed to be? Haüy called them molécules
intégrantes, but these were not our modern molecules. Indeed, not even Haüy
could say just what they were. So his critics changed the question from what
the bricks are to where they are, marking their positions with the points at
their centers. Sets of translation-equivalent points in R3 are now called Bravais
lattices, named for the French polymath who enumerated them in 1850. The
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Bravais lattices are still a (if no longer the) foundation stone of mathematical
crystallography.

But Fedorov was interested in actual crystals and thus in the bricks
themselves. What did they look like? More precisely, Which convex polyhedra
fill the space when placed face to face in a parallel position?

Defining a parallelohedron P to be such a polyhedron, he showed that it is
completely characterized by three properties:

1. P is centrosymmetric;

2. Each face of P is centrosymmetric.
(1) and (2) together imply that each edge of P belongs to a set of
parallel edges that span around P like a belt. The length of a belt is
the number of edges in it.

3. Each belt of P has a length of four or six.
With these three conditions and Euler’s formula relating the faces, edges,

and vertices of polyhedra, Fedorov proved that every convex parallelohedron
is one of five combinatorial types (see the illustration below).

The five combinatorial types of parallelohedra. Top row: the rhombic hexahedron and
the hexagonal prism; Middle: the truncated octahedron; Bottom row: the rhombic
dodecahedron and the elongated dodecahedron.

Fedorov presented the parallelohedra in a book he called An Introduction to
the Theory of Figures, published in 1885. It had taken him six years to find a
publisher. Contemporary science, the mathematician P.L. Chebyshev told him,
was not interested in this subject. Undiscouraged, Fedorov persisted. He knew
that Camille Jordan, in his 1868 Memoire sur les groupes des mouvements,
had generalized lattices to orbits of groups of orientation-preserving motions
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(rotations, translations, and screw-rotations). Fedorov added orientation-
reversing motions (reflections, glide-reflections, and rotatory reflections), thus
quadrupling the list of groups of motions.

Independently, at the suggestion of Felix Klein, Arthur Schoenflies in
Germany had begun working on the same problem. He and Fedorov joined
forces. “Ich freue mich besonders, dass ich nun mit meiner Theorie nicht mehr
allein stehe,” 1 Schoenflies wrote to Fedorov. Each found errors in the other’s
list; together they established the correct number, 230, in 1891.2

Schoenflies was interested in the space groups as groups, Fedorov in their
use in crystallography. To each crystal, he believed, corresponded a tiling
of R3 by parallelohedra. The parallelohedra, in turn, could be partitioned
into congruent “stereohedra,” each containing a crystal molecule. “Fedorov
passively accepted the concept of the molecule as the final stage of matter,”
his biographers explain, “and considered, in principle, that the ultimate aim
of crystallography should be the classification of all possible “receptacles” for
this finite unit.”

Fedorov knew that not all 230 space groups afforded such receptacles. In
modern terminology: each space group is a product of a translation group
and the subgroup of O(3) that describes the crystal’s macroscopic symmetry.
Only when the product is semi-direct can their orbits be partitioned as
Fedorov’s crystal-structure theory required. He declared the other groups to
be “imaginary” and continued his classification project with the “real” ones.

Contemporary science was not interested in this problem either; in 1891,
even crystallographers thought lattices were at best a useful fiction and left
the space groups on the library shelf. That changed, suddenly, in 1912.

You [said] that the human eye shall never see atoms... approximately
at the time when people saw atoms with their own eyes; if not the
atoms themselves, then the photographic images caused by them,

Fedorov wrote to a scientist friend, referring to an experiment Max von Laue
had conducted in Munich “several weeks ago.” Von Laue had solved the X
in X-rays. Scientists had debated whether X-rays were waves or particles. If
they were waves, they would behave like waves: they would be diffracted by
a grating of suitable dimensions. And if the space theory of crystal structure
was correct, crystals would be just such gratings. Testing both hypotheses in
a single experiment, Von Laue passed a beam of X-rays through a crystal and
captured them on a photographic plate on the crystal’s opposite side. The
photographs showed sharp bright spots, confirming both.

1 “I am especially pleased that I’m no longer alone with my theory.”
2 Schoenflies granted Fedorov the priority (“Die Prioiritat gebe ich Ihnen gern zu”), but

his version has been the more influential. German was the international scientific language
of the time, and even without the language barrier Fedorov, an autodidact in mathematics,
was difficult to understand.
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On hearing this news, young W.L. Bragg, a student at Cambridge Univer-
sity, had a Eureka moment: he realized that the diffraction patterns could be
read backward to deduce the atomic positions that gave rise to them. “For us
crystallographers this discovery is of prime importance,” Fedorov continued his
letter, “because now, for the first time, we can have a clear picture of that on
which we have but theoretically placed the structure of crystals and on which
the analysis of crystals is based.”

One of the first crystals Bragg “solved” was ordinary salt. Today his
three-dimensional checkerboards of Na and Cl atoms are found in every
chemistry classroom. But in 1912 his model shocked the establishment, much
as the discovery of quasicrystals seventy years later. Everyone had expected
to find NaCl molecules arranged symmetrically in the crystal. But, Bragg
showed, there are no molecules in salt (see the illustration below). Fedorov
acknowledged with good grace that

X-ray diffraction showed that the crystal structure of rocksalt — known to be cubic —
is a checkerboard arrangement of Na and Cl atoms. Top Row: Fedorov had expected
to see an arrangement of NaCl molecules like this. Bottom Row: A plane in the
actual structure. There is no way to group Na and Cl atoms into “molecules” in a
pattern with cubic symmetry.
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Some of these conclusions are unexpected, at least in the sense that
in the points of real systems one expected to find centers of chemical
particles, while the experiments of this scientist permit one to draw
the conclusion that these are the centers of atoms.

In short, Fedorov’s imaginary groups were real.
Overnight, contemporary science became interested in crystal structure and

the space groups were taken off the shelf. But now that one could “see”
inside them, crystal shapes weren’t needed anymore. Morphology was just
for museums. The Crystal Kingdom, the massive tome that Fedorov thought
would be his legacy, was obsolete before its posthumous publication in 1920.

But Fedorov’s contributions to geometry are undimmed. He would be
pleased to know that space-filling polyhedra are of great interest in contem-
porary mathematics, chemistry, condensed-matter science, and even industrial
design, in spaces of every dimension. And that the space groups remain a basic
tool in crystallography, a science that has grown far beyond crystals.

Marjorie Wikler Senechal
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Andrei Andreyevich Markov, Sr. (1856––1922)

Andrei Markov Sr. was an outstanding representative of the St. Petersburg
school of mathematics, the author of fundamental works in number theory,
real analysis and, especially, probability theory. The scheme he proposed for
studying texts by mathematical methods, later called Markov chains, became
the basis for a new section of probability
theory, the theory of stochastic processes,
whose applied importance in modern sci-
ence can hardly be overestimated.

Andrei Markov was born on the 14th
of June 1856 (New Style) in Ryazan in
the family of Andrei Grigoryevich Markov,
an official of the Forest Department. The
family moved to St. Petersburg (in the
early 1860s), and when Andrei graduated
from St. Petersburg Gymnasium 5 in 1874
he entered St. Petersburg University, with
which his entire scientific biography was
connected. In 1886 he became a professor
and a member of the Academy of Sciences.

His passion for mathematics, which emerged in his gymnasium years, grew
into an independent study of higher mathematics, and, according to his father,
he did not want to do anything but mathematics, which, naturally, affected
his graduation grades. There was also a curious incident: Markov thought he
had invented a new method of integrating linear differential equations with
constant coefficients! The results of his appeal to famous mathematicians
from St. Petersburg (Viktor Bunyakovsky, Egor Zolotarev, and Alexander
Korkin) concerning his imaginary discovery were, on the one hand, sad, for
they explained to him that his method was not new and pointed out the
errors. On the other hand, the gymnasium boy Markov became acquainted
with professors of St. Petersburg University and entered the house of Korkin
whom Zolotarev often visited. This certainly strengthened Markov’s desire to
link his future life with science.

During his years at the university (1874––1878) Markov had a reputation
as one of the ablest students; his teachers were Pafnuty Chebyshev, Egor
Zolotarev, Alexander Korkin, Julian Sochocki, and others, and conversations
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with Professor Korkin had a strong influence on the choice of the subject of
Markov’s independent research. It was at Korkin’s request that in 1878 Andrei
Markov was kept at the university to prepare for professorship, which started
in 1880 after the defense of his master’s thesis.

The main areas of Markov’s research pertain to number theory, differential
equation theory, function theory, approximation theory, and most prominently
to probability theory. His master’s thesis On binary quadratic forms of
the positive determinant was a worthy continuation of the research by Egor
Zolotarev and Alexander Korkin. According to Boris Delone, this work

...belongs to the sharpest achievements of the St. Petersburg school of
number theory, and perhaps of all Russian mathematics. [2, p. 144].

Another major event in Russian science was Markov’s doctoral dissertation
On some applications of algebraic continuous fractions (1885), which continued
the research by Pafnuty Chebyshev and developed the latter’s doctrine on the
limit values of integrals.

This was the first in a series of papers by Markov on moment theory, a
research tool in both interpolation and function approximation, as well as in
probability theory. Markov developed a rigorous proof of the central limit
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theorem of probability theory under sufficiently general conditions, and a
substantial extension of the scope of the law of large numbers. His series
of papers (1906––1912) gave rise to the modern theory of Markovian processes
and Markov chains, which is widely used in science and engineering.

Markov had taught since 1880 until his death (with few interruptions).
Even after his retirement, he did not sever ties with his alma mater, reading
his favorite course on probability theory in the Physics and Mathematics
Department. His two widely known textbooks Finite-difference calculus (1886,
lithographed edition) and Probability Calculus (1900) were in demand not only
in Russia, but also abroad (foreign translations were published). In Russia,
for example, his Probability Theory was already reprinted four times in its
lifetime. Besides, we are indebted to Markov for the emergence in Russian
mathematics of such scientists as Nikolai Günther, Georgy Voronoy, Boris
Koyalovich, Andrei Markov Jr., and others.

Andrei Markov was always notable for his proactive attitude, keen sense of
justice, and unconditional rejection of everything evil. The uncompromising,
straightforward, and open-minded Markov fought all his life against what he
considered unjust and an obstacle to progress. His objections against the
cancellation of the election of Maxim Gorky at the meeting of the Department
of Language and Literature of the Academy of Sciences on February 25 1905
as an honorary academician are widely known.

In 1908, following the release of an instruction from the Ministry of Public
Education administering police functions to teachers, Markov sent a letter to
the minister informing him of his refusal “to be a government agent at the uni-
versity.” After Leo Tolstoy was excommunicated by the Holy Synod, Markov
sent a petition, which created quite a stir, asking that he be excommunicated
as well...

As a counterbalance to the celebration of the 300th anniversary of the House
of Romanov organized in 1913, the Academy of Sciences on the proposal of
Academician Markov celebrated the 200th anniversary of the publication of the
outstanding Swiss mathematician Jakob Bernoulli’s The Art of Conjecturing
(Ars Conjectandi). But sometimes, unfortunately, his aversion to diplomacy
which so often is found in academia and the rejection of authority complicated
his relations with his colleagues. In addition, Markov underestimated the works
of Sofia Kovalevskaya, Viktor Imshenetsky, Karl Pearson, and Pavel Nekrasov.

Few people know that Andrei Markov was a passionate chess player since his
gymnasium days and was friends with Mikhail Chigorin, the strongest Russian
chess player and a contender for the title of world champion. After Markov took
first place (with 6 points out of 6 possible) at the First All-Russian Tournament
by Correspondence, Chigorin chose him as his sparring partner to prepare for
a correspondence match against Wilhelm Steinitz (1890). Markov kept this
passion for chess throughout his life. In fact, a year before his death Markov,
having deteriorated eyesight due to glaucoma, took part in a tournament held
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Newspapers about Markov’s demand to be excommunicated. Петербургская газета,
8 мая, 1912; Peterburgskaia gazeta, 1912.05.08.

at the natural science station in Novy Peterhof, playing with professor Nikolai
Günther without looking at the board.

Andrei Markov died in 1922 in Petrograd, was buried in Mitrofanievsky
cemetery, and re-buried in 1954 at Literator Bridges (Literatorskiye Mostki)
in the Volkov cemetery.

Natalia Lokot
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Markov numbers in arithmetic and geometry

Andrei Andreevich Markov (1856––1922) was an outstanding Russian math-
ematician. His works on probability theory and mathematical analysis are
widely known and generally recognized. He developed a theory of an extensive
class of stochastic processes with discrete and continuous time components,
named after him. This theory has countless applications in modern theoretical
and applied research, its influence is difficult to overestimate. A. A. Markov
made a huge contribution to the theory of continued fractions and the calculus
of finite differences. In the theory of pattern recognition and artificial intelli-
gence tasks most of the algorithms use the concept of a hidden Markov model,
which originates in Markov’s works.

However, A.A. Markov is no less well-known as a specialist in number
theory. He received the first significant result in his master thesis On binary
quadratic forms of a positive determinant [11, 13] (see also [10, 12]). One of
the central objects of the dissertation is a certain Diophantine equation that
subsequently arose in many areas of mathematics, quite far from the original
problem of minimizing of quadratic forms. In this note we will discuss this
aspect of A. A. Markov’s extensive mathematical heritage.

The Markov equation

The Markov equation is a Diophantine equation of the form

x2
1 +x2

2 +x2
3 = 3x1x2x3. (1)

Solutions of this equation are now known as Markov triples. The Markov
numbers are all natural numbers appearing in these triples. Let (x1, x2, x3) be
a Markov triple. Consider the following three transformations

(x1, x′2, x3)

(x1, x2, x3)

t2

OO

t3

((
t1

vv
(x′1, x2, x3) (x1, x2, x′3)

(2)

where
x′i :=

3x1x2x3

xi
−xi.
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According to Vieta’s formulas, new triples

(x′1, x2, x3), (x1, x′2, x3), (x1, x2, x′3) (3)

are also solutions of the Markov equation, moreover x′i 6=xi. Such a procedure
ti is called an elementary transformation ormutation in the element xi, and the
corresponding triples are called neighboring. It can be shown that if all three
entries x1, x2, x3 are different, then all triples (3) are also different. Moreover,
a mutation in the maximal element of the triple reduces this element. For
example, if x1 = max(x1, x2, x3), then x′1 <max(x2, x3)<x1. It follows that
any solution of the Markov equation is obtained from (1, 1, 1) by successive
application of mutations. All the Markov triples can be written as a graph in
which the neighboring ones are connected by an edge. The graph has the form
of an infinite trivalent tree:

(1,1,1)

(1,2,1)

(1,5,2)

(5,29,2)

(29,169,2)

(2,985,169) (29,169,14701)

(5,433,29)

· · · · · ·

(1,13,5)

(13,194,5)

· · · · · ·

(1,34,13)

(1325,34,13) (1,89,34)

It is easy to see that any Markov number is maximal in some triple. In
1913, Frobenius proposed the following conjecture.
Conjecture (uniqueness conjecture). A Markov triple is uniquely determined
by its maximal element.

Despite numerous attempts, the conjecture has not yet been proven, see [1]
for a very good introduction and historical overview.

The geometry of the Markov surface

Consider the surface X defined in the affine space A3 by the equation (1). Its
projective closure X̄ ⊂P3 is a nodal cubic with a unique singular point so that
the boundary divisor is the union of three lines forming a “triangle.”

The maps ti are automorphisms of the surface X as an affine variety. One
can check that they generate a subgroup Γ0⊂Aut(X) isomorphic to the free
product

(Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z).
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The complete automorphism group Aut(X) is generated by Γ0, permutations,
and sign changes of pairs of coordinates [3]. In this presentation, Aut(X) acts
transitively on the set of integer points of the surface X and its subgroup of
index 4, isomorphic to PGL2(Z), acts transitively on the set of Markov triples.

The projection
Ψ : X 99K P2

from the origin is a birational map, i.e., it is one-to-one on nonempty Zariski-
open subsets of U ⊂X and V ⊂ P2. Moreover, Ψ induces an embedding of
Aut(X) into the group of birational transformations of the plane so that all
the elements preserve, up to sign, the symplectic form

du∧ dv
uv

.

Thus, the subgroup of the index 2 in Aut(X) can be embedded to symplectic
Cremona group [15].

Markov numbers in approximation theory and quadratic form theory

In Markov’s original work, equation (1) arose in connection with the problem
of finding the arithmetic minimum of binary quadratic forms.

Consider a binary quadratic form

f(x, y) = αx2 +βxy+ γy2, α, β, γ ∈ R.
We assume that the form is indefinite, i.e. its discriminant

D := β2− 4αγ

is positive. The Markov constant of the form f is the number

µ(f) :=

√
D

min′(f)
,

where min′(f) is the arithmetic minimum:

min′(f) := min
{
|f(x, y)|

∣∣ x, y ∈ Z, (x, y) 6= (0, 0)
}
.

The Markov spectrum is the set of all Markov constants:

M :=
{
µ(f) | f is a binary quadratic form with D > 0

}
.

The forms f and f ′ are called equivalent if they are obtained from each other
by integer coordinate changes. It is clear that the equivalent forms have the
same minimum.

It turns out that the problem of computing the arithmetic minimum of
quadratic forms is closely related to the theory of Diophantine approximations.
The well-known theorem of A. Hurwitz states that for any irrational number θ
there are infinitely many rational fractions p

q
∈Q satisfying the inequality∣∣∣θ− p

q

∣∣∣ < 1√
5q2
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and the constant
√

5 in the denominator cannot be increased. In this regard,
the following natural definition arises: the Lagrange number for θ ∈R is the
supremum λ(θ) of the set of all real numbers λ such that the inequality∣∣∣θ− p

q

∣∣∣ < 1
λq2

(4)

holds for infinitely many rational fractions p
q
∈Q. Thus, by Hurwitz’s theorem

for the irrational θ we have λ(θ)≥ 1√
5
. The Lagrange spectrum is the set

L := {λ(θ) | θ ∈ R}
of all possible values of Lagrange numbers. The numbers θ, θ′ ∈R are called
equivalent if they are contained in the same orbit of the action group GL2(Z)
on R by Möbius transformations. It is clear that the Lagrange numbers of
equivalent real numbers are equal.

Note that the exponent 2 for q on the right side of the inequality (4) cannot
be increased: as was shown by K. Roth (1955), for any irrational algebraic
number and for any ε> 0 inequality∣∣∣θ− p

q

∣∣∣ < 1
q2+ε

has only a finite number of solutions for coprime p and q.

The results of Markov

Let m1 = 1, m2 = 2, m3 = 5,. . . be an ordered sequence of all Markov numbers.
Denote

λm =
√

9− 4/m.

Also, to each ordered Markov triple (m, m′, m′′), m > m′ > m′′ one can
associate, by a certain explicit rule, an indefinite quadratic form

Fm,m′,m′′(x, y)

which is called the Markov form. Assuming the Frobenius conjecture we can
think that Fm,m′,m′′ depends only on the maximal element: Fm,m′,m′′ =Fm.
Theorem 1 (Markov). For an indefinite binary quadratic form f(x, y) the
inequality µ(f)< 3 is satisfied if and only if f is equivalent to a multiple of
the form Fm,m′,m′′ for some Markov triple (m, m′, m′′).

Hurwitz noticed that the methods of the proof of this theorem allows to
obtain immediately a similar result for Diophantine approximations.
Theorem 2. For an irrational real number θ, the inequality λ(θ)< 3 holds if
and only if λ(θ) =λm, where m is a Markov number. In this case, the number
θ is equivalent to a root of the equation Fm,m′,m′′(x, 1) = 0.
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In particular, it follows that on the interval [0, 3) the Lagrange and Markov
spectra are discrete and coincide:

L∩ [0, 3) = M∩ [0, 3) = {λn } .
On the contrary, on the right hand side of the real line, these spectra are

continuous: G. A. Freiman in 1975 proved that the Lagrange and Markov
spectra contain the interval [λF, +∞] (Hall ray), where

λF :=
2221564096 + 283748

√
462

491993569
≈ 4.52.

On the other hand, the behavior of Lagrange and Markov spectra on the
interval [3, λF] is quite complicated and still not fully understood.

Markov numbers in geometry

Degenerations of the projective plane. Consider an analytic family {St}t∈∆

of compact complex surfaces over a disk ∆⊂C such that for t 6= 0 the fiber St
is isomorphic the projective plane P2. In this situation, the central fiber of S0

is called degeneration of P2.

*

* *

In general, the structure of degenerations of P2 can be quite complicated.
M. Manetti [9] posed a problem of classification of degenerations of P2 admit-
ting only quotient singularities, i.e., those degenerations whose singularities are
analytically equivalent to quotients C2/G, where G⊂GL2(C). This problem
is interesting, important, and motivated by its applications in the theory of
modules of curves and surfaces, as well as in the Minimal Model Program.

Recall that the weighted projective plane P(d1, d2, d3) is the set of triples of
numbers (x1, x2, x3) 6= (0, 0, 0) with identification:

(x1, x2, x3) = (td1x1, td2x2, td3x3), t ∈ C∗.
Here d1, d2, d3 are natural numbers called weights. We will assume that the
weights are pairwise coprime. For d1 = d2 = d3 = 1 we get the usual projective
plane. Otherwise, P(d1, d2, d3) has quotient singularities.
Theorem 3 ([7]). If the weighted projective plane is a degeneration of P2, then
it has the form

P(m2
1, m2

2, m2
3),

where (m1, m2, m3) is a Markov triple. Conversely, each weighted projective
plane P(m2

1, m2
2, m2

3) is a degeneration of P2.
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A complete classification of degenerations of P2 was obtained in [7], as well
as similar results for degenerations of the two-dimensional quadric and other
del Pezzo surfaces.

Exceptional vector bundles on P2. A vector bundle E on a nonsingular complex
projective algebraic variety X is called exceptional if

Hom(E , E) = C and Extq(E , E) = 0 when q > 0.

An ordered collection of vector bundles E1, . . . , En is called exceptional if all Ei
are exceptional and

Extq(Ei, Ej) = 0 for i > j and q ≥ 0.

An exceptional collection is said to be complete if it generates a bounded
derived category Db(X) of coherent sheaves on X. The presence of a complete
exceptional collections imposes very strong restrictions on the variety X. We
will consider only the case of the projective plane X = P2. In this case, any
line bundle is exceptional and the triple(

OP2 , OP2(1), OP2(2)
)

is a complete exceptional collection. Moreover, an exceptional collection on P2

is complete if and only if it consists of three elements.
In the works of A.N. Rudakov [14] and A.L. Gorodentsev and Rudakov

[4] a surprising fact was established: one can define certain transformations
(mutations) of the complete exceptional collections of vector bundles on P2,
similar to the mutations of Markov triples (2). In particular, the ranks of
bundles in complete exceptional collections are exactly Markov triples. These
results have generalizations to arbitrary del Pezzo surfaces [8].

Markov numbers in Lobachevsky geometry. The classical Fricke identity
states that for any matrices A, B, C = AB ∈ SL2(R) the following equality
holds

tr(A)2 + tr(B)2 + tr(C)2 = tr(A) tr(B) tr(C) + tr(ABA−1B−1) + 2.

If the matrices are integer and the commutator ABA−1B−1 is a parabolic
matrix, then tr(ABA−1B−1) =−2 and the numbers

tr(A)/3, tr(B)/3, tr(C)/3

form a Markov triple. This observation allows us to reformulate many
questions about Markov numbers in terms of the action of the modular group
Γ = PSL2(Z) and its congruence subgroup Γ(3) on the Lobachevsky plane.

Consider the Poincare model H (the upper half-plane in C) of the Loba-
chevsky plane. The action of a hyperbolic transformation A ∈ Γ(3) on the
closure H̄ has two real fixed points θ and θ′. The circle passing through these
points and perpendicular to the real axis is a straight line in the Lobachevsky
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geometry,

θ′θ

and its image on the quotient H/Γ(3) is a geodesic γA. It turns out that γA
has no self-intersections if and only if λ(θ), λ(θ′)< 3 and its length can be
expressed in terms of Markov numbers. The uniqueness conjecture also has an
interpretation in these terms [1]. This approach, using Lobachevsky geometry
was applied by D.S. Gorshkov [5, 6] in order to reprove Markov’s results in
purely geometric methods.

Markov numbers in symplectic geometry. One of the interesting and impor-
tant problems in symplectic geometry is the question of the classification of
Lagrangian tori in the complex projective plane with a symplectic form equal to
the Kähler form of the standard Fubini-Study metric. In the recent works of R.
Viano [16], significant progress has been made in this direction. In particular,
an infinite family of nonequivalent Lagrangian tori parametrized by Markov
triples was constructed.

In conclusion, we note that our brief overview is not complete. Unex-
pected applications of Markov triples continue to appear in various parts of
mathematics. We hope that there will be many more other appearances, as
well as interesting connections between them will be found. Here is what the
outstanding Soviet mathematician B.N. Delone wrote about the master’s thesis
of A.A. Markov [2]:

This work, highly appreciated by Chebyshev, is one of the most
insightful achievements of the St. Petersburg school of number theory
and, perhaps, of all Russian mathematics.

Yuri Prokhorov
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Université Pierre et Marie Curie.

[16] Vianna, R.F. de V. (2016) Infinitely many exotic monotone Lagrangian tori in
CP2, J. Topol., 9(2), pp. 535––551.



Alexander Mikhailovich Lyapunov (1857––1918)

Alexander Lyapunov created the modern theory of equilibrium stability.
Before him, stability problems were typically solved in the first approximation,
i.e., by discarding all the non-linear terms of the equations without ascertaining
the validity of such a linearization. The foundational work in this area is
Lyapunov’s doctoral dissertation The General
Problem of Stability of Motion.

In 1900, as he was preparing for a series
of lectures on the theory of probability, Lya-
punov suggested a new method: the method
of characteristic functions. Having generalized
the research by Chebyshev and Markov (Sr.),
he proved the central limit theorem in the prob-
ability theory under much weaker assumptions
than his predecessors. A large series of research
papers by Lyapunov concerned the theory of
figures of equilibrium of a uniformly rotating
fluid whose particles are mutually attracted
according to the law of universal gravitation.
Before his research, it had been proved that
the equilibrium figures for homogeneous fluids
are ellipsoidal,1 and Lyapunov was the first to
rigorously prove the existence of close to ellipsoidal equilibrium figures for
homogeneous and weakly inhomogeneous fluids.

The great mathematician’s grandfather, Vasily Alexandrovich Lyapunov
(1778––1847), was a syndic of the Imperial Kazan University Board, i.e., an
official representative of the university authorized to conduct its affairs. Vasily
Alexandrovich and his wife Anastasia Evseevna had nine children: three sons
and six daughters. All the children received a good education.

Mikhail Vasilievich Lyapunov (1820––1868), Alexander’s father, graduated
from the Mathematics Department of Kazan University with a silver medal in
1839. His main fields of study were mathematics and astronomy. In 1840, he
was appointed as the observer-astronomer at the university observatory.

1 The ellipsoids of Maclaurin (1742) and Jacobi (1831).
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After the Kazan fire of 1842, Mikhail Vasilyevich was sent to Pulkovo to
oversee the repair of equipment from the university observatory that was
damaged in the fire. There, he studied astronomy under Vasily Struve
(Friedrich GeorgWilhelm von Struve), Otto Struve (OttoWilhelm von Struve),
Yegor Sabler (Georg Thomas Sabler), and others. In 1845, Lyapunov returned
to Kazan to his former position as an astronomical observer, and in 1850, he
was appointed director of the Kazan observatory.

In 1853, Mikhail Lyapunov married Sofia Alexandrovna Shipilova, who was
then aged 28.

Akexander Lyapunov with his wife, Bolobonovo, 1904. From archives of A.N.
Lyapunov.

In 1855, Mikhail Lyapunov was elected a corresponding member of the
university, and soon retired. The following year, he was appointed principal of
the Yaroslavl Demidov Lyceum, and he and his wife moved to Yaroslavl. They
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had a son there, Alexander, born on June 6th (May 25th Old Style2) 1857.
Alexander spent his early childhood with his mother and brothers in the village
of Bolobonovo, Kurmyshsky county, Simbirsk province. His mother’s letters,
sent during this period, show what a troublesome time it was: serfdom had just
been abolished, and it was very difficult for her to build a new relationship with
the peasants. She did not know how to deal with this unprecedented situation,
and no one around her had any advice for her or experience around such issues.

Mikhail Vasilyevich resigned from his position as headmaster of the Demi-
dov Lyceum in 1864 due to health reasons; the family settled in Bolobonovo
in a wooden (one-story, five-room) house, which Mikhail Vasilyevich had just
built on the estate received by Sophia Alexandrovna from her parents.

Here, Mikhail Lyapunov had a wonderful “library, replete with works in
Russian, German, and French, and ranging across not only subjects like
mathematics, astronomy, and the natural sciences, but also philosophy, history,
ethnography, political economy, and literature.”

Initially, the children’s education was supervised by their mother, but from
the age of seven, they were taught by their father, who devoted himself entirely
to this task after his retirement.

When his father died in 1868, Alexander was 11 and a half years old. He
continued his studies in the family of Raphail Mikhailovich Sechenov, an artist,
married to his father’s sister Ekaterina Vasilievna. Here, he and his cousin,
his future wife Natalia Rafailovna, a year younger than him, were trained in
gymnasium3 subjects and learned new languages under the guidance of hired
teachers and his aunt Glafira Vasilievna Lyapunova.

Two years later, Alexander, his mother, and his brothers moved to Nizhny
Novgorod where he was admitted to the third class of Nizhny Novgorod
gymnasium. In the autumn of 1876, having graduated with a gold medal,
Alexander entered the physics and mathematics department of St. Petersburg
University. At first, he studied at the department of natural sciences, being
particularly zealously engaged in chemistry with Dmitri Mendeleev. Just a
month later, however, he transferred to the department of mathematics, where
Pafnuty Lvovich Chebyshev taught at that time, who, in Alexander’s own
words, “had a significant influence on the character of [my] subsequent scientific
activity with his lectures and advice.”

In 1880, Alexander Lyapunov received a gold medal for an essay written on
a particular topic in analytical mechanics that was suggested by the faculty,
and published two papers on hydrostatics in the Journal of the Physical and
Chemical Society after making a presentation at a meeting of the Society.

2 ‘Old Style’ refers to the Julian calendar, used by the Russian Orthodox Church. For
example, Orthodox Christmas Day occurs on January 7th, whereas the use of the Gregorian
calendar means Christmas Day is celebrated on December 25th.

3 Gymnasium is a grammar school.
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After his mother died suddenly in 1879, Alexander took over the care of
his younger brother Boris. From 1881 to 1885, he and his brother shared
a room in the flat of the sister of Ivan Mikhailovich Sechenov,4 Professor of
Physiology. During that time, Alexander liked to work at night. Once a
week, the family, including Ivan Sechenov, liked to relax in the company of
young students, who gathered on Sundays at Sechenov’s sister’s flat. In those
days, Alexander gave Sechenov lessons in branches of mathematics that he
considered especially important for a physiologist. Sechenov delighted in and
wholeheartedly supported all of Alexander’s scientific successes. For two years,
Lyapunov had been diligently working on a problem proposed by Pafnuty
Chebyshev. Although he failed to solve Chebyshev’s problem, he obtained
a closely related result on the stability of the ellipsoids of Maclaurin and
Jacobi. In 1885, Alexander Lyapunov defended this work as his thesis for

4 Ivan Mikhaylovich Sechenov (1829––1905), a Russian physiologist, was one of the
originators of objective psychology and the author of the classic Reflexes of the Brain,
in which he introduced electrophysiology and neurophysiology into laboratories and the
teaching of medicine.

The house in Bolobonovo where Lyapunovs lived after the retirement of Mikhail
Vasilyevich. 1904. On the left: Boris Lyapunov, future academician, and philologist.
From archives of A.N. Lyapunov.
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a master’s degree and, in the autumn of the same year, moved to a position as
a privatdozent at Kharkov University.

Types of stability figures (ellipsoids of Maclaurin and Jacobi, etc.) in Chebyshev’s
problem, [6].

Being in Kharkov, Lyapunov taught extensively and strenuously and later
considered this period a complete loss to science, although he did obtain a
number of remarkable results during this time. His famous version of the
central limit theorem in probability theory is also linked to his teaching
activities during this period. For the winter holidays, Alexander came to
St. Petersburg, where on the 17th of January 1886, he married his cousin
Natalia Sechenova, Ivan Sechenov’s niece, to whom he was deeply attached
from his early childhood.

According to his closest pupil, Vladimir Steklov, Lyapunov worked every
day until 4 or 5 AM. He allowed himself almost no entertainment, and when
he occasionally appeared (once or twice a year) at a theatre or concert, it
was only on the most exceptional of occasions, such as the rare concerts given
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by his brother, the renowned composer Sergei Lyapunov. Steklov wrote: “He
sometimes gave off the impression of being a silent, frowning, and reserved
person because he was so absorbed in his scientific speculations that he looked
— but didn’t see, listened — but didn’t hear, as his father-in-law Raphael
Sechenov sometimes kindly laughed at Lyapunov’s absent-minded behaviors
amongst close friends.”

The results obtained by Lyapunov on stability formed the subject of his
doctoral dissertation, The General Problem of the Stability of Motion, defended
at Moscow University in 1892. In 1900, Alexander Lyapunov was elected a
corresponding member of the Imperial Academy of Sciences, and in 1901 he
was elected an ordinary member of the Applied Mathematics Division. A year
later, Lyapunov moved to St. Petersburg. He now had the opportunity to
devote himself wholly to science and to work on Chebyshev’s problem.

In 1908, Alexander Lyapunov was sent to the Fourth International Math-
ematical Congress in Rome. He planned to meet Henri Poincaré, with whom
he had common scientific interests and a scientific correspondence that began
during the last decade of the XIXth century. Unfortunately, due to the poor
organization of the congress, these plans were not fulfilled, and he never had
the chance to meet Poincaré.

However, Lyapunov did meet some other colleagues in Rome: the French
mathematicians Émile Picard, Jacques Hadamard, and Édouard Goursat, and
the Italian mathematicians Vito Volterra, Giuseppe Veronese, and Tullio Levi-
Civita, to name a few.

Lyapunov published four grand memoirs containing a complete solution
to the Chebyshev problem. After Lyapunov’s tragic death, he left behind a
completed extensive manuscript in which he developed his results.

The work accomplished by Lyapunov during the last 15 years of his life is
nothing short of a remarkable feat.

In the summer of 1917, Alexander left for Odessa with the hope that its
southern climate would benefit his wife’s health, which was severely damaged
by tuberculosis. They never returned to Petrograd, where they had left their
apartment with all their possessions.

The last year of his life was a tragic one. Alexander Mikhailovich struggled
to deliver a series of lectures at Novorossiysk University due to complete
exhaustion, his impending blindness (from a cataract), and the increasingly
deteriorating condition of his wife.

The news he and his brother Boris received from relatives and colleagues on
rare occasions was not cheerful. One day they received word that the beloved
house built by their father, where they had spent their childhood, had been
burned down, along with their library, by peasants in the area.

On the 31st of October 1918, the tragic ending came. His wife Natalia died;
Alexander shot himself and was taken to a surgical clinic with a gunshot wound,
where he died on the 3rd of November 1918 without regaining consciousness.
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In the note he left behind, he wrote that he wished to be buried in the same
grave as his wife.

Lyapunov’s work was widely recognized. During his lifetime, he was elected
an honorary member of the Universities of St. Petersburg, Kharkov, and Kazan,
a foreign member of the Accademia dei Lincei in Rome, a corresponding
member of the Academy of Sciences of Paris, a foreign member of the Circolo
Matematico di Palermo, an honorary member of the Kharkov Mathematical
Society, a full member of the Moscow Mathematical Society, etc. Lyapunov
Stability Theory is now studied in universities around the world. In 1969, the
USSR Academy of Sciences established the Lyapunov Gold Medal, and after
the collapse of the USSR in 1995, the Russian Academy of Sciences established
the Lyapunov Prize. In Moscow and Kharkov, there are Lyapunov streets that
are named after him.

Askold Khovansky and Tatiana Belokrinitskaya
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Lyapunov stability theory

Alexander Mikhailovich Lyapunov (1857––1918) was a great Russian math-
ematician. His classic works on the qualitative theory of differential equations,
mechanics, mathematical physics, and probability theory are internationally
recognized. His theory of stability has countless applications in theoretical
and applied research; its influence can hardly be overestimated.

Lyapunov’s Stability Theorem. Recall a fundamental and very elegant theorem
on the stability of a stationary solution, to one degree or another familiar to
every student of mathematics.

The motion of a point y ∈ Rn with velocity F (y, t), depending on the
position of the point and on the time t, is determined by the differential
equation

y′ = F (y, t) (1)
and by the position y0 of the point y at the initial moment t0.

A solution y0(t) of equation (1) with the initial data y0(t0) = y0 is called
Lyapunov stable if any solution y1(t) with sufficiently close initial data y1 at
any moment of time is sufficiently close to y0(t), that is, for any ε > 0 there
exists δ > 0 such that |y1 − y0|< δ implies |y1(t)− y0(t)|< ε for t > t0, where
y1(t) denotes a solution with the initial data y1(t0) = y1.

A solution y0(t) is called asymptotically stable if it is Lyapunov stable and
there exists a δ > 0 such that |y1− y0|<δ implies limt→∞(y1(t)− y0(t)) = 0.

Below we consider autonomous differential equations y′ = F (y) with
F (0) = 0, and we discuss the stability problem for the stationary solution
y0(t)≡ 0 of such equations.

Let ỹ′=Aỹ be the linearization of the equation y′=F (y) at the fixed point
y= 0, where A denotes the differential of the vector function F at 0. Let Λ(A)
denote the maximum of the real parts for the eigenvalues of the differential A.

Lyapunov’s Theorem. If Λ(A)< 0, then the stationary solution y(t)≡ 0 to the
equation y′ = F (y) is asymptotically stable. If Λ(A)> 0, then the stationary
solution is not Lyapunov stable.

This theorem almost always solves the stability problem for the stationary
solution: it fails to apply only in the exceptional case where Λ(A) = 0.

Lyapunov Theorem splits the spaces of the first degree Taylor polynomials
for vector functions F , F (0) = 0, into the following three sets:
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1) a stable set defined by the condition Λ(A)< 0, for which, regardless of
the other coefficients of the Taylor series for the vector function F , the
stationary solution is stable;

2) an unstable set defined by the condition Λ(A)> 0, for which, regardless
of the other coefficients of the Taylor series for the vector function F ,
the stationary solution is unstable;

3) a neutral set defined by the condition Λ(A) = 0, for which the stability
of the stationary solution depends on the remaining coefficients of the
Taylor series for the vector function F .

The partition of the space of 1-jets and vector functions F into stable,
unstable, and neutral sets is semi-algebraic: the sign of Λ(A) can be determined
by calculating the values of a finite number of special polynomials in the
coefficients of the differential matrix A.

The relative simplicity of this partition does not mean at all that the
question of stability is simple. A similar partition of the space of k-jets of
a vector function F into stable, unstable, and neutral sets for a large k is
extremely sophisticated, and definitely not semi-algebraic.

Therefore, the very general and relatively simple stability criterion found
by Lyapunov should be regarded as a remarkable result and a rare piece of
luck. In 1892, he published his fundamental work on the general problem of
motion stability. Lyapunov’s theory of stability has become classical and is
included in the compulsory mathematics program at universities worldwide.

Lyapunov function. Lyapunov has found a surprisingly simple and flexible
proof of his stability criterion.

A function G(y) is called a Lyapunov function for the dynamical system
y′ = F (y) if G does not increase as y moves along the trajectory of the

dynamical system, that is, if
dG(y(t))

dt
= 〈gradG, F 〉 ≤ 0, where gradG is the

gradient of G and 〈v, w〉 denotes the scalar product of v and w.
For any constant C, the domain G≤ C is invariant with respect to the

dynamical system. Therefore, if the Lyapunov function G has a strict local
minimum at y0, then y(t)≡ y0 is a Lyapunov stable stationary trajectory of
the dynamical system. If, in addition, the strict inequality 〈gradG, F 〉< 0
is satisfied at the non-critical points of G, then this stationary solution is
asymptotically stable.

Indeed, given a differential A with Λ(A)< 0, it is easy to construct a positive
definite quadratic form, which in a neighborhood of the origin is a Lyapunov
function of the system under consideration. The existence of such a quadratic
form immediately implies the Lyapunov stability of the stationary solution.
The rest of the theorem can be verified just as easily.

Imagine a mechanical system, the energy of which is conserved or reduced
over time, for example, due to friction. Energy is a Lyapunov function of
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this system. Damped small oscillations of such a mechanical system near the
equilibrium position give a visual representation of the dynamics of the system
around the stable equilibrium position described in the Lyapunov Theorem.

Chebyshev’s problem. In this part of the note, we use one article by
V.A. Steklov, the closest student of A.M. Lyapunov, dedicated to the work
of his teacher. As an aspiring mathematician, Lyapunov began solving a
problem of P.L. Chebyshev, which he was engaged in until the last days of
his life. Chebyshev formulated his problem as follows:

It is known that a liquid homogeneous mass, whose particles are
attracted by Newton’s law and which rotates uniformly around a
certain axis, can maintain the shape of an ellipsoid as long as the
angular velocity ω does not exceed a certain limit.
For values of ω greater than this limit, ellipsoidal figures of equilibrium
become impossible.
Let ω be a value of the angular velocity with an equilibrium ellipsoid E.
Let us give the angular velocity a sufficiently small increment ε. The
question is, are there other equilibrium figures for the angular velocity
ω+ ε, not ellipsoidal ones, continuously depending on ε and coinciding
with the ellipsoid E for ε= 0?

This extremely sophisticated question, connected with the problem of
possible forms of celestial bodies, interested many scientists.

Lyapunov obtained the first partial result related to the Chebyshev problem
in his master’s thesis in 1885.

The great French mathematician A. Poincaré also dealt with this problem.
He investigated the first approximation and, on the basis of this approximation
to the solution (without rigorous proof and without estimating the error), he
came to a conclusion about the existence of an infinite number of different
forms of equilibrium close to ellipsoids. He did not know that Lyapunov had
reached similar conclusions three years earlier. Poincaré’s results were viewed
by contemporaries as an outstanding achievement.

In 1901, Lyapunov was elected a full member of the Imperial Academy of
Sciences and could devote himself entirely to scientific activities. After that,
Lyapunov published a series of memoirs devoted to the Chebyshev problem,
which, even from a purely external side, make a strong impression: their
volume is over 1000 large-format pages. Using a completely original approach,
Lyapunov constructed successive approximations of any order, proved the
convergence of the corresponding series and thus obtained a complete solution
to the problem.

After the tragic death of A. M. Lyapunov, a completed manuscript of 489
pages remained, containing deep generalizations of his results.

Askold Khovanskii



Georgy Feodosevich Voronoy (1868––1908)

Georgy Voronoy1 published a total of 12 papers, all of which became clas-
sics. The works belong mainly to three major areas: algebraic number theory,
theory of quadratic forms, and analytic number theory, and they harmoniously
combine arithmetic, geometric, and analytic
methods.

In mathematics there are individuals who
appear suddenly, their obsession with their
science is amazing, their discoveries excite the
scientific community, attracting students and
followers, they burn brightly and, burning out
quickly, they define new directions of scientific
research for many years to come. Georgy Feo-
dosevich Voronoy (1868––1908) was just such
a phenomenon in Russian mathematics. He
was born on April 16, 1868, in the village of
Zhuravka, Poltava governance, to the family
of teachers Feodosy Yakovlevich and Cleopatra
Mikhailovna Voronoy.

Georgy Voronoy published his first article
while still at school. In 1884, Professor Vasily
Ermakov of the Kiev University began publish-
ing the Journal of Elementary Mathematics, which among other things offered
topics for student papers in mathematics. Voronoy turned out to be the only
one who submitted a paper on the topic Factorization of polynomials based
on the properties of the roots of quadratic equations. Ermakov liked the work
and published it in his journal in 1885.

The same year Voronoy graduated from grammar school and entered
St. Petersburg University. At the university, Georgy diligently attended lecture
courses in pure mathematics, which increasingly fascinated him. In his diary we
read that “Professor Sochocki’s lectures in the special course of higher algebra
I prefer to all others.” After graduation, Voronoy was retained to prepare for
his master’s examination (1889) on the recommendation of professors Andrei
Markov, Alexander Korkin, and Julian Sochocki.

1 Spelling variant: Voronoi.
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Voronoy wrote in his diary in 1887

What concerns me most is whether I have enough talent [...] at
moments when the mind embraces an idea that used to slip away like
a ball, I forget that I exist [...] my recent successes I owe to the habit
of thinking without pen and paper. All the propositions I have proved
had arisen quite independently [...] I hope that this habit of thinking
in this way will serve me well.

After successfully defending his thesis, Voronoy was appointed professor of
mathematics at the Imperial University of Warsaw in the Department of Pure
Mathematics, where he worked for the rest of his life, with a short interruption.
There he met and befriended professor of mathematics and mechanics Nikolai

Ukraine’s coin 2 hryvnias
with Voronoy.

Borisovich Delone and his family. Boris Delone
(the son of Nikolai Delone) liked to tell how
Voronoy used to visit them and stay up late
talking with his father. Voronoy’s influence
on Delone’s work later turned out to be very
significant.

According to Delone, Voronoy thought geo-
metrically but had to translate his reasoning into
arithmetical language, because the leaders of
the St. Petersburg school and especially Andrei
Markov, the main opponent of the thesis, did
not welcome the geometrical character of the
presentation and a thesis written in geometrical
language might not have been allowed. His
doctoral dissertation was brilliantly defended in

1897 at St. Petersburg University. Both his master’s theses, On algebraic
integers depending on the roots of an equation of third degree (1894) and On a
generalization of the algorithm of continued fractions (1896) were devoted to
solving the most important problems in this field and were awarded the V.Ya.
Bunyakovsky Prize in 1896.

Some works by Boris Delone and part of the famous monograph by Boris
Delone and Dmitry Faddeev Theory of irrationalities of the third degree were
devoted to the geometrization of Voronoy’s algorithm. His dissertation was
only printed in Russian, which was partly why its results remained little known
abroad for a long time, and some of them were rediscovered in the following
decades.

The article by Georgy Voronoy in analytic number theory Sur un problème
du calcul des fonctions asympototiques (1903) stimulated the development of
this branch of research in modern mathematics. Another Voronoy’s discovery
was the Voronoy method of generalized summation of series (1902). Unfortu-
nately, it did not become widely known and was rediscovered in 1919 by the
Swedish mathematician Niels Erik Norlund (1885––1981).
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Georgy Voronoy was married to Olga Mitrofanovna Kritskaya, a girl from a
noble family whose estate Bogdany was near his Zhuravka. Olga Kritskaya was
his great love from his youth. They had six children. In addition to his own
large family, Voronoy also took care of his sister’s family (she widowed early)
with seven children. All his children, except one of his daughters who died in
childhood, were well educated and became specialists: physicians and teachers.
The two elder daughters Alexandra and Maria and the eldest son Alexander
and their families became victims of Stalinist repression. His younger son
Yury Voronoy (1896––1961) was a well-known surgeon and a doctor of medical
sciences; he became famous for performing the world’s first human-to-human
kidney transplant in 1933. Voronoy’s scientific legacy was collected in a three-
volume edition and commented on by famous mathematicians Boris Venkov,
Boris Delone, Yury Linnik, Nikolai Chudakov, and Igor Shafarevich [3].

Professor Voronoy taught at the University of Warsaw (1894––1906, 1908)
and the Polytechnic Institute (1898––1906, Warsaw; 1907––1908, Novocher-
kassk); his students included Waclaw Sierpinski, Tadeusz Banachiewicz, and
others.

Unfortunately, Georgy Voronoy passed away untimely, at the age of 40
in Warsaw, on November 7 (20), 1908, from cholelithiasis and was buried in
Zhuravka (Ukraine).

Natalia Lokot
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G.F. Voronoy: from Numbers
to Parallelohedra

Georgy Feodosevich Voronoy (1868––1908) was an outstanding mathemati-
cian, a student of Andrei Markov, one of the most prominent specialists in the
St. Petersburg number theory school.

During his study at St. Petersburg University, Voronoy wrote a remarkable
paper on Bernoulli numbers (1890). This work was admired by professor
Andrei Markov, who offered Georgy Voronoy the chance to continue his
study at the university “to prepare for acquiring a professorship.” 1 Under
Markov’s guidance, Voronoy wrote his candidate2 thesis “On algebraic numbers
depending on the root of a 3rd degree equation,” devoted to the problem of
finding the basis in the ring of algebraic integers of a cubic field (1894).

In his doctoral thesis On a Generalization of the Algorithm of Continuous
Fractions (1897), Voronoy constructed an exceptionally efficient algorithm for
finding fundamental units of cubic fields. In this work, Voronoy succeeded
in gaining much deeper insight into the essence of the question than his
famous predecessors such as Egor Zolotarev, Hermann Minkowski, and others.
The Voronoy construction essentially generalized the existing algorithm for
dimension two to three-dimensional lattices.

Voronoy’s research in algebraic number theory was awarded the Bun-
yakovsky Prize of the St. Petersburg Academy of Sciences.

In 1903, Voronoy published a memoir on the analytic number theory. Let

S(n) = τ(1) + τ(2) + . . .+ τ(n),

where τ(k) denotes the number of divisors of k. In the work “On a problem
in the theory of asymptotic functions” Voronoy made significant progress
in the Dirichlet divisor problem, namely, for the function S(n) he found
an asymptotically more accurate value than Dirichlet’s estimation. This
important work was the starting point for the research of such outstanding
mathematicians as Wac law Sierpiński (who was a student of Voronoy) and
Ivan Vinogradov.

1 This is more or less similar to modern postgraduate study.
2 Master degree.
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In the late 1890s, influenced by the work of Minkowski on the geometry of
numbers, Voronoy begins his study in the theory of quadratic forms

f(x1, . . . , xn) =

n∑
i,j

aijxixj .

Minkowski, the creator of the geometry of numbers, showed deep interest in
these studies of Voronoy during their personal meeting3 at the Third ICM
(Heidelberg, 1904). In his extensive memoir “Properties of positive-definite
quadratic forms” (1908), Voronoy gave an algorithm for finding all locally
extremal positive-definite quadratic forms in n variables. The geometric
meaning of this problem is to find all locally densest lattice sphere packings of
the space Rn.

The last, most profound Voronoy’s memoir “Studies on the primitive
parallelohedra” (published posthumously in 1909) was devoted to the study
of polyhedra4 of a special kind. In 1885, the remarkable crystallographer
Evgraf Fedorov introduced the concept of a parallelohedron as a convex
polyhedron, parallel copies of which, attached to each other along whole
faces, can fill the entire space without overlapping. It is easy to see that
the two-dimensional analog of the parallelohedron is either a parallelogram or
a centrally symmetrical hexagon (see the illustration below). Parallelepiped
and regular hexagonal prisms are examples of three-dimensional parallelohedra.
Fedorov found all five combinatorial types of three-dimensional parallelohedra
(see the illustration on page 176).

Planar parallelohedrons.

In the second half of the 1890s, H. Minkowski studied parallelohedra and
found a number of their fundamental properties. In the course of this research,
Minkowski discovered one of the most remarkable theorems about convex
polyhedra. Namely, he has shown that there exists one, and only one convex
polyhedron with assigned face directions and areas. Because a parallelohedron
tessellates the space with shifted self-copies, each of its faces (hyperface in
the high-dimensional case) has an opposite, equal and parallel to it. Using
this fact and the mentioned above general theorem, Minkowski deduced the

3 Their both were among the invited congress speakers.
4 We use the words polyhedron and polytope as synonyms.
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Five types of three-dimensional parallelohedra.

following corollary. Any parallelohedron is centrally symmetric and all its
faces (hyperfaces) are also centrally symmetrical. Later, Boris Delone added
another property: if we project a parallelohedron along its edge (a face of
codimension two) onto the plane, we always get either a parallelogram or a
centrally symmetrical hexagon. In 1954, Boris Venkov established that these
three parallelohedron properties are not only necessary, but also sufficient.

There is an easy way to build parallelohedra. To do this, we need to take
the lattice Λ of integer points with respect to a chosen arbitrary basis in Rd
(see the illustration below). For a point λ ∈Λ we construct its Voronoy cell
Vλ := {x∈Rd : ||x− λ|| ≤ ||x− λ′||, ∀λ′ ∈Λ}. It is easy to see that the cell Vλ
is a convex polyhedron, which is also a special case of parallelohedra. Such
polyhedrons are now called Voronoy parallelohedra.

Lattice. Voronoy’s cell.

The geometry of the Voronoy parallelohedron is uniquely defined by the
lattice Λ and, ultimately, by its basis. In turn, the basis in the n-dimensional
Euclidean space is determined by n(n+ 1)/2 parameters: the lengths of the
vectors and the angles between them.

However, not every parallelohedron is a Voronoy parallelohedron. For
example, affine transformations preserve the class of parallelohedra, but,
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generally, not the class of Voronoy parallelohedra. In the case of dimension two,
the class of parallelohedra consists of parallelograms and centrally symmetrical
hexagons. But Voronoy parallelohedra are those that can be inscribed in a
circle.

Voronoy, having developed the geometry of positive definite quadratic
forms, constructed the theory of n-dimensional Voronoy parallelohedra and,
in particular, proposed an algorithm that calculates, in a given dimension, the
total number of combinatorial types of Voronoy parallelohedra.

What about finding other types of parallelohedra? In his last memoir
Voronoy considered primitive parallelohedra defined by the following prop-
erty. At every vertex of n-dimensional space partition by polyhedra, exactly
n + 1(the minimal possible number) polyhedra meet. It is known that for
n= 2, 3 there exists only one primitive parallelohedron, and for n= 4 there
are three primitive parallelohedra out of 52 polyhedra types. As n grows,
the number of primitive parallelohedra grows rapidly, but their share in the
total number of all types of parallelohedra decreases. Voronoy proved that (in
arbitrary dimension) any primitive parallelohedron is affine equivalent to some
Voronoy parallelohedron.

Two key ideas used in Voronoy’s proof are both related to the possibility
of lifting a space partition to a paraboloid. The first idea: the Voronoy
diagram of any discrete set X ⊂Rn (and not just a lattice) can be “lifted” to a
polyhedron circumscribed about a circular paraboloid y=x2

1 + · · ·+x2
n in the

space Rn⊕R1. Voronoy called such a polyhedron a generatrix. The generatrix
is projected into a Voronoy tiling of the space Rn (see the illustration below). In
this case, the set of the generatrix face tangent points is projected into the set of

The generatrix.
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points, for which the Voronoy cells are projections of the corresponding faces.
This fact is actively used in the computational geometry to study Voronoy
diagrams.

The second Voronoy’s idea happened to be difficult to implement. The
statement was the following. Any partition T of the space Rn in primitive
parallelohedra can be lifted to a polyhedron circumscribed about some elliptic
paraboloid Π. Let the partition T be lifted to such a polyhedron Π. Consider
the affine transformation ϕ taking the elliptic paraboloid Π to the circular
one ΠV . Then, the map ϕ takes the partition T to the Voronoy tiling TV , and
primitive parallelohedra to Voronoy parallelohedra, respectively.

This fragment of the last Voronoy’s essay, in which he proves the affine
equivalence of primitive parallelohedra to Voronoy parallelohedra is, according
to Delone, the deepest part of the whole memoir.

The problem of a complete parallelohedra classification is still far from
being solved. The keystone to this problem is the following Voronoy’s question
(1908): Whether any (not necessarily primitive) n-dimensional parallelohedron
is affine equivalent to a certain Voronoy parallelohedron. Now, more than a
century later, this question is affirmatively answered (besides the cases n= 2, 3)
for n= 4 (Delone, 1929) and n= 5 (A. Garber and A. Magazinov, 2019).

Nikolai Dolbilin
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Aleksey Nikolaevich Krylov (1863––1945)

The prominent Russian engineer and mathematician, academician Aleksey
Nikolaevich Krylov, made major contributions to the mathematics of shipbuild-
ing and naval engineering, and to the design of the first dreadnought vessels.
After the revolution, he was one of the organizers of the Physico-Mathematical
Institute of the Academy and helped to retain the Russian Academy of Sciences
under new political power.

A.N. Krylov was born in 1863 into a family of Russian provincial gentry,
his father being a former artillery officer. Among his close relatives were the
famous physiologist Sechenov, the opthalmolo-
gist Filatov and the future mathematician Lya-
punov (who was a few years his senior). Over
the past century the highly talented Lyapunov
family counts several first-rank scientists and
intellectuals. When Aleksey was ten years old,
the family moved to Marseille, where he ob-
tained a solid knowledge of French, and then
to Riga, where he studied German and Latin.
This had been the intention of Aleksey’s father
who always stressed the importance of juvenile
immersion into the linguistic environment for
the study of foreign languages.

At the age of 15 Aleksey chose the Naval
School in St. Petersburg to continue his educa-
tion. One of the reasons for this choice, apart
from the long-standing military tradition of the family, was his aversion to
ancient languages which were not taught to future Naval officers (in contrast
to university students). However, his solid background in Latin acquired during
his studies in Riga would later prove valuable, as it enabled him to read the
memoirs of Gauss and Euler; much later his Russian translation of Newton’s
Principia became a classic.

Very soon, the young student showed a profound interest in mathematics
and naval engineering. After three years in Naval School he was appointed
ensign. His first scientific work, published in 1887, treated the theory of
compass deflection and was based on Gauss’ treatise on geomagnetism and on
the works of Fourier. From 1888 to 1890, he continued his studies at the Naval
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Academy. Upon graduating he was appointed lecturer at the Naval School
while continuing his mathematical education at St. Petersburg University
where he attended the courses of Professors A.A. Markov, A.N.Korkin, D.A.
Gravé, along with many others. His important early contribution to the teach-
ing of Mathematics at the Naval School rested on the correct use of approximate
calculations. At that time students and engineers often carried out extensive
calculations with dozens of decimal places without a clear understanding of the
fact that most of these decimal places were in fact superfluous and often totally
erroneous. Krylov’s simple yet effective remarks on the matter led to a drastic
simplification of these calculations, and they became the basis of his innovative
treatise on approximate calculations (Lectures on Approximate Calculations
(1911)) which has often been republished, each time with additions.

In 1895 Krylov started his fundamental study of oscillatory ship motion in
waves, and in 1898 his work in this area was awarded a Gold Medal by the
Royal Institution of Naval Architects. In this work Krylov deduced simple
differential equations for the 6 parameters (3 coordinates of the center of mass
and 3 Euler angles) determining the position of a ship following a course of

constant angle to the direction of undulation.
These differential equations are then integrated
by the method of successive approximation; this
in turn allows explicit computation of the forces
acting on the ship and determination of the
resulting tensions in the ship’s body.

In the following years Krylov actively partic-
ipated in the naval construction program of the
Russian Navy with a special emphasis on the
concepts of stability, buoyancy, and survivability
of military vessels. In simple terms, he insisted
that a damaged ship may lose floatability but
even in this extreme situation it should preserve
stability and not capsize. The importance of
this concept (at that time completely new) was

dramatically confirmed by the tragic and heavy losses suffered by the Russian
navy during the Russo-Japanese War of 1904––1905. Three years later Krylov
was appointed Inspector General of Naval Construction in Russia. This
appointment came at a time of great technological changes in international
naval engineering following the invention of the heavily armed dreadnought
vessels. Krylov actively participated in the rearmament of the Russian navy
in the years preceding the First World War; he made a decisive contribution
to the construction of the first Russian naval vessels of the dreadnought class.

In 1916 Krylov was elected a full member of the Russian Academy of Sci-
ences. After the revolution, which took place the following year, he contributed
much to the survival of the Academy and carried out numerous administrative
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duties. Together with academician Steklov, he played a decisive role in the
organization of the new Physico-Mathematical Institute of the Academy which
he headed for several years after the premature death of Steklov. He also
played an essential role in the revival of the Russian trade fleet, which was
badly damaged by the Revolution and the Civil War. He was sent to Western
Europe to acquire railway equipment, particularly locomotive engines. In 1918
he wrote a famous 70-page memoir on numerical methods in ballistics, drawing
and improving on recent methods of the Norwegian Carl Stormer (Adams–
Stormer-method). This was published in France in 1927 on the initiative
of Jacques Hadamard. Krylov remained totally loyal to the new Soviet
authorities, although both his two sons perished during the Civil War fighting
on the opposite side. While many of his former colleagues were compelled to
emigrate (such as the eminent chemist and military engineer, V. Ipatiev, also
a member of the Academy) — or perished during the purges, Krylov escaped
prosecutions and remained an eminent expert in Naval Architecture. In 1944,
as a tribute to his lifelong service in Naval Engineering, he was elected an
Honorary Member of the British Royal Institution of Naval Architects. He
died the following year at the age of 82.

Mikhail Semenov-Tian-Chanski



Vladimir Andreevich Steklov (1864––1926)

Vladimir Steklov was a leading mathematical physicist who obtained many
significant results in mathematical analysis, mechanics, fluid dynamics, theory
of elasticity, etc. In particular, he developed a technique for solving boundary
value problems by an expansion of solutions in terms of eigenfunctions; also,
he extended numerous results in potential theory and in heat conduction
theory to a large class of nonconvex domains. He reorganized the Russian

Academy of Sciences (RAS) into the Academy of
Sciences of the Soviet Union and was the founder
of its school of mathematical physics.

The Steklov Mathematical Institute of the
RAS (or “steklovka” for short) is widely known
as the leading mathematical center of the Soviet
Union and later Russia. Steklov, its eponymous
founder, combined the talents of a pragmatic
administrator and a first-class mathematician.
During the day, he was involved in administra-
tive affairs, then slept for a few hours in the
evening, and then worked on scientific problems
until four or five in the morning.

Steklov was born in 1864 into the family of
the priest Andrey Ivanovich Steklov, a teacher
of Russian history and Hebrew at the Nizhny

Novgorod Theological Seminary. His mother was Ekaterina Alexandrovna,
née Dobrolyubova.1 From his childhood, he was interested in natural sciences.
Together with his uncle Ivan Steklov, also a priest, he read Mendeleev’s
Chemistry and conducted many experiments in their own physics room.
Steklov, like his relatives, had a fine baritone voice. He sang at parties and
celebrations in his youth, and even contemplated an opera career, but his
passion for mathematics took over.

Relying on his excellent memory, Steklov did not study particularly hard
until the sixth form of the gymnasium.2 His father, wanting to taunt him, once
said: “I thought you were only lazy, but apparently you are just incapable.”

1 Her brother, Nikolai Dobrolyubov (1836––1861), was a well-known literary critic. Family
conversations about his late uncle and his beliefs influenced Steklov’s worldview.

2 Gymnasium is a grammar school.
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After these words, Steklov spent the holidays diligently studying the course
(Greek, Latin, Russian, history, etc.) of the previous five years. The same
thing happened at university: He was expelled from the first-year course of the
Faculty of Physics and Mathematics of Moscow University (he failed to answer
the trivial question “what is the longest day in Moscow?”). He tried to enter
the Medical Faculty but ended up in Kharkov at the Faculty of Physics and
Mathematics. There, he took up his studies seriously.3 Steklov organized clubs
in mathematics and physics, and after lectures read extracurricular books of
his choice for up to 8 hours a day.

He kept a detailed diary but it has not yet been published, so his most
complete biography is his own Memoirs [1], written around 1923. In them,
he explains how in 1886, at the age of 22, after having fallen in unrequited
love with his second cousin, he decided to live solely for science. At that time,
Lyapunov moved to Kharkov, and Steklov became his pupil and later his best
friend. In 1890, Steklov married Olga Drakina; they had a daughter, Olga,
who died of meningitis in 1901.

In Kharkov, Steklov was active in public life and fought against the
university charter of 1884, which considerably curtailed the autonomy of the
universities. He was once even challenged to a duel by a medical professor,
which he only laughed at wryly. In 1904, Steklov was elected Rector of the
University, but he refused to accept the post, taking only the Dean of the
Faculty of Physics and Mathematics duties. His last year in Kharkov, 1905,
was a violent one, with student uprisings and barricades. As Dean, Steklov
mediated between the insurgents and the troops who arrived to quell the unrest,
preventing the situation from escalating.

In 1906, Steklov moved to St. Petersburg, taking up a position in the Math-
ematics Department vacated by the retirement of Andrei Markov. Professors’
salaries were not very high, so many taught at several institutions, “wasting
their remarkable strength and destroying their talents,” as Steklov put it,
resolutely refusing any part-time positions in favor of science. At the 1912
International Congress of Mathematicians in Cambridge, he was one of the
vice presidents, together with Vito Volterra and Jacques Hadamard among
others.

Even then, Steklov saw only two outcomes for Russia: either the destruction
of the monarchy and the ensuing civil war or the imposition of brutal despo-
tism. Steklov was a man of science first and foremost and cared about its needs,
so after the revolution of 1917, he, along with Krylov and others, cooperated
with the new government,4 and being concerned about the Academy of Sciences

3 He did, however, occasionally allow himself to go to the opera.
4 It can be argued that Steklov (together with Aleksey Krylov, Sergey Oldenburg, and

others) saved the Academy of Sciences, as many Bolsheviks who came to power believed that
a new academy should be established on Marxist ideological grounds; it cost Steklov great
effort to defend both the existence of the Academy and its funding. For example, it was not
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Academician Steklov among guests on the 200th Anniversary celebration of the
Academy of Sciences. Leningrad, 1925, [6].

took on the role as its vice president from 1919. He succeeded in having seismic
stations built all over Russia and establishing the Institute of Physics and
Mathematics in 1921, which after his death was named after him.5

In the years of hunger during the Civil War, Steklov, together with Gorky,
lobbied Lenin and Lunacharsky for a special ‘scientific ration’ for members of
the Russian Academy of Sciences. In 1920, his wife Olga died of malnutrition
and scurvy. Left all alone, Steklov was absorbed in mathematics and the needs
of the Academy.6

at all clear to the new government whether it was worth spending money on firewood to
heat the zoological and anatomical museums in wartime and famine conditions.

5 Initially, the Institute was made up of mathematics, physics, magnetology, and seis-
mology departments. In 1926, the Institute of Physics and Mathematics was named after
Steklov. In 1934, the institute was divided into two independent institutes: Physics and
Mathematics, the latter being named the Steklov Mathematical Institute of the Academy of
Sciences.

6 In 1923, Steklov managed to achieve the adoption of a regulation according to which
the Russian Academy of Sciences became the main administrator of its budget. It was in
force until 2013 [4]. As Vladimir Smirnov wrote, “V.A. [Vladimir Andreevich] took over the
work on both the administrative and scientific parts at a time when it seemed that nothing
could be done, everything was falling apart. But it was not in V.A.’s temperament to fold
his hands at a dire moment. The more difficult the situation, the more energetically he
took up his work. He organized the printing of scientific works and purchasing of books and
appliances from abroad, he worked hard on the restoration of the ruined seismic network, and
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Steklov took part in the study of the Kursk Magnetic Anomaly.7 In 1925,
he caught a severe cold but endured the illness on his feet without reducing
his activity in the slightest. Due to complications, Steklov died in 1926 in
Gaspra, where he had gone for treatment. He is buried next to his uncle
Nikolay Dobrolyubov.

As for Steklov’s scientific achievements, we shall only briefly describe the
beginning of his career. Alexander Lyapunov asked Steklov to investigate the
question of the motion of a billiard ball on a rough surface, building on the
work of Coriolis. The task was to test not only Steklov’s knowledge but also
his ability to work independently. Steklov coped brilliantly with the task,
presented his work in February 1888, and was retained by the university on
Lyapunov’s recommendation. In the summer of 1888, Steklov studied, this time
quite independently, Gustav Kirchhoff’s Lectures on Mathematical Physics.
Having studied all the material available on the motion of a solid body in a
liquid, he began to think about the problem by himself and found a case not
mentioned by Kirchhoff. Steklov wrote: “Such a thrill from my own scientific
work, I must say, I never experienced after.” Lyapunov was delighted with his
student’s success but added that, unfortunately, this case had already been
discovered by Clebsch.

An example of Steklov’s handwriting.

In 1893, Steklov defended his master’s thesis On the Motion of a Solid Body
in a Fluid, providing a missing conservation law, which is a quadratic form

he organized the Mathematical Study and then the Institute of Physics and Mathematics”
[2].

7 It is the largest magnetic anomaly in the world. In the course of its research, Steklov
wrote several scientific papers on the theory of Eötvös torsion balance and on determining
the size and depth of the magnetic layer from several observations.
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of linear and angular velocity. This problem has four cases of integrability:
two of them were found by Clebsch in 1871, the third one by Steklov in his
thesis, and the fourth by Steklov’s supervisor Lyapunov in 1893. In 1902, he
defended his doctoral thesis General Methods of Solving Fundamental Problems
in Mathematical Physics. In 1908––1909, Steklov published in France a major
work Problème du mouvement d’une masse fluide incompressible de la forme
ellipsoidale dont parties s’attirent suivant la loi de Newton [Problem of the
movement of an incompressible fluid mass of ellipsoidal shape whose parts
attract each other according to Newton’s law]. This is a problem relating to
the shape of celestial bodies, and it was one on which Lyapunov was working.

Steklov also worked on the classical problem of the motion of a solid body
around a fixed point. The solution of the problem for the Euler and Lagrange
cases made it possible to construct the theory of gyroscopes, which found
wide application in technology, including space navigation. Another case was
found by Sofia Kovalevskaya. Later, researchers considered other special cases
corresponding to a particular choice of initial conditions. Two such cases were
found by Steklov.

A full and rather impressive list of Steklov’s scientific achievements may be
found in [3, 4, 5].

Nikita Kalinin
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Steklov top

Most people are familiar with the most significant motions of the Earth: the
Earth rotates on its axis every 24 hours, and it orbits the sun every 365 days.
But the direction of the Earth’s rotational axis itself is not fixed: analogous
to the behavior of a spinning top or a gyroscope, the axis traces out a circular
path, known as a precession, with a period of about 26,000 years, and wobbles
slightly about that circle, or undergoes a nutation, with a period of 18.6 years.
This precession and nutation (see the illustration below) are driven by the
interaction of the Earth with the gravitational forces of the Sun and Moon.

Illustration of precession and nutation for Earth.

Another form of nutation was predicted in 1765 by Leonhard Euler, who
suggested that an axially symmetric rigid body, with a difference between the
equatorial and polar moments of inertia, will freely wobble as it rotates. Using
equations describing rotations of a free rigid body around its center of mass

Ṁ = M ×ω , M = Iω,

where I is the Earth’s tensor of inertia and M , ω are the angular momentum
and angular velocity vectors, Euler predicted that free nutation of Earth would
have a period of about 10 months, but Chandler’s observations, first published
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in 1891, established that the actual period is about 14 months. In 1892,
Newcomb explained the discrepancy between theoretical and experimental
periods, considering Earth to be a body with cavities filled with a fluid.

In 1908 Steklov [1] obtained equations of motion for an ellipsoidal rigid
body with a cavity filled with the ideal incompressible fluid being in a state of
homogeneous vortex motion. In his approach, Steklov used general methods
developed by him for solving boundary value problems of mathematical physics
and reduced the problem of fluid motion to the solution of Neuman’s problem
which he called the main problem of hydrodynamics.

In [2] Steklov studied a partial case of equations of motion from [1] when
ellipsoid has a fixed center and fluid being in the Dirichlet motion. Steklov
proved that this system of equations has three-dimensional invariant manifolds
fulfilled by periodic orbits except a zero Lebesgue measure set by using the
last Jacobi multiplier and the Poincaré small parameters methods. Then he
discussed new and known cases integrable by quadratures and estimated the
period of the Chandler precession, the thickness of the Earth’s crust, etc.

A more rigorous and perfect theoretical description of precession and
nutation was given by Poincaré in [4] which continues a set of Poincaré works
devoted to the construction of the Euler type equations on finite and infinite
Lie algebras. According to Poincaré and V.I. Arnold, an extension of Euler’s
equations for arbitrary Lie algebra is equal to

Ṁ = ad∗ω(M)M ,

where the vector M belongs to a space g∗ conjugate to the Lie algebra g,

ω(M) : g∗ → g

is a linear self-conjugate operator defining the Hamiltonian H = (M , ω)/2, and
the map adξ : g→ g is the linear map η→ [ξ, η], where [ξ, η] denotes the Lie
bracket.

In a suitable basis Euler’s equations on so∗(4)∼= so∗(3)⊕ so∗(3) have the
form

ṡ = s× ∂H
∂s

, ṫ = t× ∂H
∂t

, s, t ∈ R3 ∼= so∗(3) .

In the Steklov case the Hamiltonian H = b1H1 + b2H2 is a linear combination
of the functions

H1 = (As, As)− 2(s, A∨t) ,

H2 = (A∨t, A∨t)− 2 detA(s, At) ,

defined by the symmetric matrixA= I−1, which is inverse to the Earth’s tensor
of inertia I, and by its co-factor matrix A∨= detA ·A−1. The matrix A has
the diagonal formA= diag(a1, a2, a3) in the so-called reference frame, which is
firmly attached to the ellipsoid, and its axes coincide with the principal inertia
axes. The physical meaning of the parameters b1,2 may be also found in [2].
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The basic Steklov’s Hamiltonians H1,2 define bi-Hamiltonian vector fields

ẋ = {x, H1} = {x, H2}′,
{H1, H2} = {H1, H2}′ = 0,

where [. , .] is the Lie–Poisson bracket on so∗(4) associated with Lie bracket
[. , .]

{si, sj} = εijksk , {si, tj} = 0 , {ti, tj} = εijktk

and [. , .]′ is the linear Poisson bracket compatible with [. , .]

{si, sj}′ = 0, {si, tj}′ =
εijk

2aiak
sk, {ti, tj}′ =

εijk
2

(
sk
aiaj
− a−2

k tk

)
.

The linear map

f : so∗(4) ∼= so∗(3)⊕ so∗(3) → e∗(3) ∼= so∗(3)nR3

defined by
f : p = s, M = (A2− trA2)s− 2A∨t ,

relates compatible linear Poisson brackets on so∗(4) and e∗(3)

f :

Lie–Poisson brackets {. , .}so∗(4)

&&

{. , .}e∗(3)

xx
Second linear brackets {. , .}′so∗(4)

88

{. , .}′e∗(3)

ff

.

In the last formula, the Lie–Poisson bracket on e∗(3) is equal to

{Mi, Mj} = εijkMk , {Mi, pj} = εijkpk , {pi, pj} = 0 .

This Poisson map f identifies Steklov top on so∗(4) with the Steklov–Lyapunov
top on e∗(3) describing the motion of a rigid body in a fluid [3]. It allows us
to use separated variables and Abel’s quadratures proposed by Kötter [5] in
both cases. The corresponding 2× 2 Lax matrices are suitable to standard
finite-gap linearization of dynamics on the Jacobian of genus two hyperelliptic
curve.

There are also non-linear Poisson maps relating the Steklov and Steklov–
Lyapunov tops with a potential motion on a 2D sphere

p = αJ −β(x× J) , M = J −Cz , zi =
3∑

j,k=1

|εijk|xj(x× p)k ,

where α, β and C satisfy some algebraic equations and vectors x and J are co-
ordinates on the cotangent bundle T ∗S2 to unit sphere S2. The corresponding
Hamilton–Jacobi equation is separable in elliptic or spheroconical coordinates,
which after inverse Poisson map coincide with Kötter’s separated variables [5].

For Steklov top, it is also known that Hamiltonians H1,2 commute with
respect to a few non-linear Poisson brackets on so∗(4) having a common
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symplectic foliation with the Lie–Poisson brackets [. , .]. Eigenvalues of the
corresponding recursion operator on the generic symplectic leaves of so∗(4) are
so-called Darboux–Nijenhuis variables which are separated variables for the
Steklov top different from the Kötter variables. Divisors of these separated
variables are obtained from divisors of the Kötter’s separated variables by
scalar divisor multiplication on genus two hyperelliptic curve.

Summing up, Steklov studied a specific polynomial system of differential
equations on e∗(3) and so∗(4) associated with the concrete Earth model. He
did not use underlying Lie symmetries and Poisson brackets, Lagrangian or
Hamiltonian formalism, he only explicitly constructed integrals of motion and
solutions of differential equations similar to permanent rotations, analyzed
the effect of the viscosity on dynamics, found the period of the Chandler
precession, thickness of the Earth’s crust, etc. Now we have another model
of Earth, nevertheless, we can continue Steklov’s work to solve various pure
mathematical problems. For instance, we can classify compatible polynomial
and rational Poisson brackets on so∗(4) using arithmetic of divisors and isoge-
nies of algebraic curves, consider Dirac brackets associated with other types of
fluids with viscosity in electric and magnetic fields, study various deformations
of the Steklov top on the Lie algebras so∗(4) and so∗(3)⊕ so∗(3)⊕ · · ·⊕ so∗(3),
etc.

Andrey Tsiganov

Bibliography
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Boris Grigoryevich Galerkin (1871––1945)

Boris Galerkin was an expert engineer in structural mechanics, a specialist
in the theory of elasticity, a full member of the USSR Academy of Sciences,
and an engineer-lieutenant general. He developed several parts in structural
mechanics and the theory of elasticity. Despite
the complexity of the mathematical apparatus,
Boris Galerkin’s results were presented down to
very concrete results that were ready to be ap-
plied directly. He was one of the founders of the
finite element method.

Berka Girshevich Galerkin, as was his original
name, was born on 20 February 1871 to a poor
Jewish artisan family in the village of Prudok
in the Lepel district of Vitebsk governance of the
Russian Empire. His parents were Girsh–Shleima
and Pearl–Basya Galerkin. The elementary edu-
cation of the future academician lasted for only
two years, as his parents, who were engaged in
handicrafts, could not afford more. From the age
of 12, Boris had to take side work as a scribe in the Orphans’ Court. In Polotsk,
the oldest city in Belarus, he graduated from a Realschule (practical school).

At the age of 22, Boris Grigoryevich took an examination in Minsk, which, if
passed, would give him the right to enter a higher school. Anatoly Filin, author
of the monograph Essays on Mechanical Scientists, learned of the following
episode in 1971 in a trolleybus from a relative of Boris Grigoryevich, who
was taking part in the conference devoted to the 100th anniversary of Boris
Galerkin. According to Filin,

B.G. Galerkin’s father was of extreme Jewish nationalistic views, he
forbade his son to study Russian language, and his son did it secretly
from his father, and then passed the gymnasium course as an external
student.

Boris Galerkin arrived in St. Petersburg in 1893 and entered the mechanical
department of the St. Petersburg Institute of Technology in the same year.

He graduated from the St. Petersburg Institute of Technology in 1899. His
tutor was Professor Viktor Kirpichev, a renowned specialist in the mechanics
of materials and structural strength.
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Boris Grigoryevich started working at the Kharkov plant of the Russian
Locomotive and Mechanical Society. In 1903 he became an engineer at a line
of the Chinese Eastern Railway which was under construction at the time, and
six months later he became head of the technical department of the Northern
Mechanical and Boiler Plant in St. Petersburg.

During his student years, Boris Galerkin became involved in politics and
joined a social democratic group. In 1899, the year of graduation, he became
a member of the RSDLP,1 and in 1906 a member of the St. Petersburg
Committee of the RSDLP (he was not a member of the Bolshevik faction,
however). During the 1905 revolution, he was arrested as a member of the
Union of Engineers bureau and imprisoned for 35 days. In early 1906, Galerkin
was actively involved in the organization of the Russian Union of Metalworkers.
On 5 August 1906, police surrounded house number 13 in Alekseevskaya
Street and detained almost all the members of the Saint Petersburg RSDLP
Committee. On March 26, 1907, the Petersburg Court Chamber sentenced
Boris Galerkin to one and a half years of imprisonment. He served this term
in the “Kresty” 2 prison.

“Kresty” prison.

In the prison, he wrote his first scientific paper The theory of longitudinal
bending and its application to the calculation of structures of 130 pages (pub-
lished in 1909). The work became one of the classics in structural mechanics.

1 The Russian Social Democratic Labor Party was founded in 1898 with the idea of uniting
the various revolutionary organizations in the Russian Empire. In 1903 the party split into
Bolsheviks and Mensheviks factions. The former eventually became the Communist Party
of the Soviet Union.

2 “Kresty” means “crosses,” this political (before and after 1917) prison was named so
because it consists of two cross-shaped buildings.
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In 1913––15, Galerkin designed a steel frame structure — a metal boiler
house in St. Petersburg, the first large metal building in Russia to withstand
heavy loads. It was one of Europe’s most outstanding buildings in terms of its
boldness and originality. In 2001, the house was included by the Committee
for State Control, Use and Protection of Monuments of History and Culture of
St. Petersburg in the “List of Newly Identified Objects of Historical, Scientific,
Artistic or Other Cultural Value.” Later, Boris was a consultant in the design
and construction of all major hydroelectric power stations.

During the same years he published several important scientific papers:
Rods and plates, Rectangular plates, Bending and compression, To the cal-
culation of thin loosely supported plates, etc. The calculations for building
structures required a clear task description, the development of new mathe-
matical methods for determining the stress state of a structure and its strength
and stability.

In 1915, Boris Galerkin published a paper in which he proposed an ap-
proximate method for solving differential equations, which had a significant
influence on the development of the theory of partial differential equations.
Nowadays, the Galerkin method serves as the basis of algorithms for solving
various problems in mathematical physics, mechanics, thermodynamics, clas-
sical electromagnetism, etc.

Since 1909 he also taught a course in structural mechanics at the mechanical
department of the Imperial Saint Petersburg Polytechnic Institute, founded
on February 19, 1899. In the same year Boris traveled abroad to examine
structures he was interested in. He used the next four summers before the war
to travel to Germany, Austria, Switzerland, Belgium, and Sweden for scientific
purposes. It should be noted that he spoke three foreign languages: English,
French, and German.

Between 1924 and 1929, Galerkin taught at Leningrad State University
and the Institute of Transport Engineers. In January 1928, he was elected
a corresponding member of the USSR Academy of Sciences, and in 1935, he
became a full member.

From 1931 to 1941, Galerkin was a member of the Research Institute of
Hydraulic Engineering (NIIG).

In 1934, B.G. Galerkin was awarded two academic degrees: Doctor of
Technical Sciences and Doctor of Mathematics, as well as the title of Honored
Worker of Science and Technology of the RSFSR. He was a recognized authority
among design engineers. He was invited as a consultant for the design and
construction of several major buildings. In April 1936, by decree of the Council
of People’s Commissars, Boris was appointed chairman of the commission of
the Construction Council for the expertise of preliminary design of steel frame
with wall and ceiling structures of the Palace of Soviets in Moscow, which
would have become, if built, the most pompous building on the planet, 495
meters high with a spire.
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The project of the Palace of Soviets in Moscow.

The foundation of the building was ready by 1939, but in 1941 the
construction of the Palace of Soviets was postponed.

Boris Grigoryevich was one of the founders (in 1939) and the first director
of the Institute of Mechanics of the USSR Academy of Sciences, as well as the
editor-in-chief of the journal Applied Mathematics and Mechanics. In 1939, he
chaired the department of structural mechanics at the Military Engineering
and Technical University (VITU) in Leningrad and was promoted to the rank
of Lieutenant General Engineer.

Boris Galerkin died in Moscow in 1945 and was buried in the academic
section of the Literatorskie Mostki in St. Petersburg’s Volkov cemetery.

Irina Demidova
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The Galerkin method

The theory of partial differential equations (PDEs) has its origins in the 19th
century, when mathematicians began to study the problem: find a function
u(x, y) such that

∆u+ f = 0 in Ω, u = 0 on ∂Ω, (1)

where Ω is a bounded domain in R2 with smooth (or piecewise smooth)
boundary ∂Ω. It was unknown how to solve this equation and how the solution
could depend on the problem data. Moreover, the existence of a solution to
this problem was also the subject of active discussion.

Similar questions arose in connection with other problems Lu= f associated
with a partial differential operator L mapping a Banach space X to a Banach
space Y . At that time, the equations were studied in the framework of classical
analysis, and, therefore, the space X was considered as the space of continuous
functions having sufficiently many classical derivatives. It was discovered that
some problems have equivalent variational formulations, e.g., (1) is equivalent
to minimization of the energy functional∫

Ω

(
1
2
|∇u|2− fu

)
dx.

In 1909, W. Ritz suggested finding approximate solutions of variational prob-
lems in the form

uN (x) =
N∑
i=1

αiwi(x), (2)

where N is a natural number and the coordinate functions wi belong to X
and form a linearly independent system. The weights αi should be chosen to
minimize the functional.

However, many problems are not generated by a certain (energy) functional.
It was necessary to create a unified and mathematically justified approach valid
for differential equations of all types. Intuitively, it was clear that a suitable
approximation v should somehow minimize the residual Lv − f , but which
form of the residual should be used, and how to select the set of coordinate
functions? Without the right answers to these questions, it is impossible to
prove that uN converges to the exact solution u.

The idea of Galerkin’s method [3] is to find αi from the condition: the
residual must be orthogonal to a finite-dimensional subspace of test functions
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with integral type orthogonality conditions. For the problem (1), this principle
yields (after integration by parts)∫

Ω
∇uN · ∇widx =

∫
Ω
fwidx ∀wi ∈ XN , (3)

where XN contains functions of the form (2) vanishing on the boundary ∂Ω. In
more general cases, the sets of coordinate and test functions may not coincide
and the orthogonality relation has the form

〈LuN − f , η〉 = 0, ∀η ∈ YM , (4)

where uN is defined by (2) and YM (dimYM =M) is a set of test functions,
YM ⊂ Y ′, where Y ′ is the space conjugate to Y and 〈·, ·〉 denotes the duality
pairing of Y and Y ′. Certainly, YM and XN must be selected in such a way
that the system (4) is solvable.

This approach is very flexible. If X and Y are Hilbert spaces and the spaces
XN and YM coincide, then the method is called Bubnov–Galerkin. This name
was used by S. Mikhlin [6], who was the first to prove its convergence. If the
integral orthogonality relation originates from the Euler equation generated by
a quadratic functional, then we have the Ritz–Galerkin method. More general
schemes (such as (4)) were studied by G. Petrov, who also extended the method
to eigenvalue problems.

Portraits of W. Ritz, B. Galerkin, I. Bubnov, and G. Petrov (from left to
right) are presented below.

“How to guarantee the existence of solutions to boundary value problems for
PDEs?”

At the end of the 19th century this question was open. In particular, solvability
of the simplest problem (1) was intensively discussed in the literature (typically
in the classical sense, i.e., u was sought in C2(Ω)∩C(Ω̄)). This question was
answered after many years of studies that have completely reconstructed the
theory of PDEs.

A new concept of generalized or weak solutions was created by D. Hilbert,
H. Poincaré, S. Sobolev, R. Courant, O.A. Ladyzhenskaya, and many other
outstanding mathematicians. In fact, the Galerkin method served as a turning
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point in the study of this problem. This is easy to observe with this paradigm
the integral relation of (3).

Indeed, let tend N to +∞. If we expect that uN will tend (in some sense) to
the exact solution, then it is natural to consider the limiting form of (3), where
XN is replaced by an infinite dimensional functional space X̃ (which should
be a proper closure of {XN}). This way leads to the generalised statement of
(1): find u∈ X̃ satisfying the boundary conditions such that∫

Ω
∇u · ∇w dx =

∫
Ω
fw dx ∀w ∈ X̃. (5)

Now we know that in the case of Lipschitz Ω the closure generates the Sobolev
space

◦
H 1(Ω) (of functions vanishing on the boundary and having square

summable generalized derivatives of the first order).
Integral type definition of solutions to PDEs is nowadays commonly ac-

cepted (a systematic exposition can be found in O.A. Ladyzhenskaya and
N.N. Uraltseva, Linear and Quasilinear Elliptic equations).

If X̃ is a reflexive Banach space, then from (3) it follows that

‖∇uN‖Ω ≤ C‖f‖Ω
with a constant independent of N . Hence, there exists a subsequence of uN
weakly converging to a function u∈X. Using this fact, it is not difficult to show
that uN converges to a function u satisfying (5). Similar arguments can be
used in other boundary value problems. Therefore, Galerkin approximations
suggest a method for proving the existence of weak solutions.

E. Hopf used this idea in order to prove the existence of weak solutions to
nonstationary Navier–Stokes equations. A similar approach was often used by
O.A. Ladyzhenskya and N.N. Uraltseva [4, 5], for various nonlinear problems
in the theory of viscous fluids and other PDEs.

It is worth noting that the concept of a generalized (weak) solution and
the Galerkin method are closely related to the Virtual Work Principle in
mechanics, which dates back to J. D’Alembert (who used it for a mechanical
system of rigid bodies) and J.-L. Lagrange (who suggested a generalization
for continuum media problems). This principle was known already at the
beginning of the 19th century. The development of mathematics at that time
was insufficient to correctly determine what should be considered as “the set
of virtual displacements” and properly state the corresponding boundary value
problems.

In 1943, R. Courant [2], suggested a version of the method with locally
supported test functions, which generated geometrically flexible numerical
schemes with dispersed resolving matrixes. Later it was named the Finite
Element Method (FEM). Mathematical analysis of FEM is based upon two
fundamental relations: the Galerkin orthogonality and the projection estimate.
The latter estimate forms the basis of error analysis. It states that the distance
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between u and uN is controlled by the distance between u and the respective
finite dimensional space XN .

In this or other form, the majority of modern computational technologies
use approximations of the Galerkin type. For example, the Discontinuous Ga-
lerkin method uses (3) (or (4)) with discontinuous test functions. Many other
methods (spectral, finite volume, weak Galerkin, isogeometric, meshless) can
be viewed as advanced versions of the Galerkin concept. The need to calcu-
late Galerkin approximations for real-life scientific and engineering problems
stimulated studies in numerical linear algebra and generated the creation of
multigrid iteration methods and domain decomposition method (DDM).

Multigrid methods allow very large systems of linear equations to be solved
by using several different scales of discretizations in order to optimize the
process of computations. The domain decomposition method originates from
the method of Schwarz, who suggested to decompose domains with complicated
geometry into a collection of simple subdomains (e.g., rectangles, convex
polygons), for which the corresponding sets of test functions can be constructed
by simple methods.

In [7], the reader can find more about further development of the method
and useful references.

A systematic consideration of the Galerkin method in application to elliptic,
parabolic, and hyperbolic equations is presented in [8].

For the Discontinuous Galerkin method (DG) see [1] and references therein.

Sergey Repin
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Nikolai Maksimovich Günther (1871––1941)

Nikolai Günther,1 professor and corresponding member of the USSR
Academy of Sciences (1925), one of the founders of the Leningrad school of
mathematical physics, President of the Leningrad Physical and Mathematical
Society, devoted his whole life to science and
teaching in St. Petersburg-Petrograd-Leningrad
higher education institutions.

Working on partial differential equations,
Günther was one of the first to realize the
importance of considering solutions whose
smoothness is less than required by the equa-
tion in the literal sense. This idea, a key one for
the mathematics of the XXth century, led him
to develop the theory of functions of domains.
Although forgotten, his ideas served as the basis
for the theory of distributions constructed by
his student Sergei Sobolev and by the French
mathematician Laurent Schwartz.

His mother was Maria Petrovna Andreeva,
a peasant woman of the Tver; Nikolai was born
in St. Petersburg, baptized in the Kazan Cathe-
dral there, and surnamed Ivanov. Only in 1893, when he was a student, Nikolai
Günther was adopted by his father, the merchant Max Efimovich Günther, who
had just been christened into the Orthodox faith.

Pafnuty Chebyshev, Alexander Korkin, and Andrei Markov were his
teachers at St. Petersburg University. Markov recommended Günther for
preparation for the professorship. In 1915, Günther defended his doctoral
thesis and, in 1916, he became an ordinary professor at the department of
pure mathematics. In addition to the university, Günther taught at many
other higher educational institutions in the city, and the numerous lecture
courses he published were almost never stereotypical but took into account the
specifics of each institution.

The second decade of the XXth century in the mathematical life of St. Pe-
tersburg was characterized by the considerable interest of physicists in new

1 Spelling variants: Gyunther, Gunter, Gjunter.
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ideas of mathematics, which formed a toolkit for developing new fields in
physics. Communication with Paul Ehrenfest, Yury Krutkov, and later with
Vladimir Fock, Alexander Friedmann, Jacob Tamarkin, the brothers Abram
and Jacob Besicovitch, Vladimir Smirnov, Sergei Bernstein, and Stephen
Timoshenko, in whose scientific circle the demand for the development of
mathematical physics was clear, prompted Günther to address mathematical
problems connected to physics.

In the 1920s, he initiated a special seminar at the university on the appli-
cations of function theory to problems of fluid dynamics, potential theory, and
mathematical physics. At that time, the Leningrad Physics and Mathematics
Society was founded under the leadership of Vladimir Steklov and Nikolai
Günther, which included Alexander Friedmann, Abram Besicovitch, Boris
Delone, Jacob (James) Uspensky, Jacob Tamarkin, Vladimir Smirnov, Grigory
Fichtenholz, Vladimir Fock, and Yury Krutkov. Meetings were held twice a
month, both physicists and mathematicians addressed issues in astronomy,
mechanics, potential theory, fluid dynamics, theory of relativity, meteorology,
and theory of elasticity.

Mathematical societies existed earlier in St. Petersburg. The first one was
founded in St. Petersburg in 1890, chaired first by Vasily Imshenetsky and later
by Julian Sochocki. It had 89 members, and its meetings were held monthly
at the Academy of Sciences and then, since 1895, at the University. In the
1920s, the Physical and Mathematical Society was based on the mathematical
circle inspired by Alexander Vasiljev. In 1925, Günther became chairman of
the Society, and the Society was registered at his address.

The year 1929 was “the year of the great turnaround (perelom) on all fronts
of socialist construction.” Stalin proclaimed a route of mobilization and called
for a change in the ideological struggle on all fronts, including the scientific
one. Loyalty was placed above competence. A group of “left-wing” Marxist
mathematicians began the struggle against “Güntherism.” In 1929, elections
were to be held for the Academy of Sciences, and in terms of the significance
of his work, Günther was a candidate for full membership. Ivan Vinogradov,
who worked in number theory, had also applied for the same position.

This situation was skillfully exploited as a part of the ongoing policy to
depose the old intelligentsia. In December 1928, a mathematical section of
the Scientific Society of Marxists, consisting of five people, was formed. In
1931, they called themselves the Society of Materialist Mathematicians at
the Leningrad Branch of the Communist Academy.2 From 1931 onwards, the
“Society of Marxist-Materialists under the auspices of the Institute of Philoso-
phy” was first registered in the book “The Whole of Leningrad.” Its functions
were: “Consolidation of mathematicians-materialists of the Leningrad region

2 The Communist Academy was a higher education and research institution meant to
allow research independent of the old Academy of Sciences. It was subsumed within the
Academy of Sciences in 1936.
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in scientific work on mathematical research, the teaching of mathematics and
its application to technology, on the basis of dialectal materialism and the
revolutionary practice of economic socialist construction.”

The Physical and Mathematical Society was accused of idealism, a “closed
club of professors,” detachment from the tasks of socialist construction, and
allegedly pursuing “science for the sake of science,” i.e., “güntherism.” At the
national level, such attacks aimed to subordinate the Academy of Sciences,
the universities, and the scientific community to the Party’s leading role, and
at the level of Leningrad, to diminish the role of the old professors, to crush
the Physical and Mathematical Society, all the while advancing the career
ambitions of the “leftist” figures.

The notable number theorist Ivan Vinogradov became academician,3 by-
passing the status of corresponding member. By that time, colleagues close
to Günther, like Abram Besicovitch, Jacob Tamarkin, Yakov Uspensky, and
James Shohat, had left Russia. Vladimir Steklov and Alexander Friedmann
were no longer alive. Grigory Fichtenholz and Boris Delone moved to the
Society of Marxist Mathematicians. On March 10, 1931, the “Declaration
of the Initiative Group for the Reorganization of the Leningrad Physics and
Mathematics Society” condemning Günther was signed by Academician Ivan
Vinogradov, Professors and researchers Boris Delone, Leonid Kantorovich,
Grigory Fichtenholz, and others.

On the same day, Günther was forced to write a letter to the editorial office
of the newspaper Leningrad University saying,

Having read the declaration of the Society of Materialist Mathemati-
cians, I find it necessary to make the following statement. The life of
our country is advancing so rapidly that many people have to think
over their past activities and have to reevaluate them seriously. For
my part, I saw a year ago that I had made fundamental mistakes. I
consider my main mistake to be that when I was the president of the
Physical and Mathematical Society, I could not connect its activity
with the needs of socialist construction so that the Society actually
remained on the ground of the old slogan “science for the sake of
science.” [...] Recognizing a year ago my unsuitability to occupy
leading posts, I spoke in December 1929 to the rector of the university
about my desire to give up the chair in the university, which I have
since done; then, in January, I asked the board of the Society to release
me from the presidency, and I agreed to remain only temporarily to
bring in order financial affairs of the Society; Using my pedagogical
experience and scientific competence, however, I expect to be useful
further on. N. Günther.

In 1930, Günther resigned as chairman of the Society, and in 1931 the latter
was dissolved on the advice of Vladimir Smirnov. The Society of Materialist

3 In these elections Vinogradov, Bernstein, Krylov became academicians, Egorov and
Grave became honorary members of the Academy of Sciences USSR.
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Mathematicians, despite the support of the Communist Academy, ceased to
exist two years later. Nikolai Günther was forced to give up his position as
chair of the department but remained a professor. He continued to lecture
until the last year of his life.

Students with excellent marks talk with Prof. Günther, 4 March 1941, [6].

The years from 1932 to 1934 were his most productive scientifically. He
published two voluminous monographs, on the Riemann–Stieltjes integral and
on potential theory. In 1939, he resumed his chairmanship at the department,
and in 1941 he was awarded the title of Honored Worker of Science. Günther’s
many years of teaching were embodied in 47 published books, as well as in
the Higher Mathematics Problem Book, the thirteenth edition of which was
published in 2003. A large number of mathematicians and engineers regard
him as their teacher.

Galina Sinkevich
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Sergei Nathanovich Bernstein (1880––1968)

In his master’s thesis, Sergei Bernstein gave a partial solution to 19th
Hilbert’s problem. In his doctoral dissertation On the Best Approximation of
Continuous Functions by Polynomials of Given Degree, he laid the foundation
for a new field of mathematics: constructive function theory. Bernstein wrote

more than 200 scientific papers, most of which
were included in his lifetime collection of works,
prepared under his own editorship.

Sergei N. Bernstein was born in Odessa into
the family of Nathan Bernstein, a Doctor of
Medicine and privatdozent of the University of
Novorossiysk. There were two other siblings:
a brother, later a famous psychiatrist, and a
sister, who studied in Paris, became a promi-
nent microbiologist, and worked at the Pasteur
Institute until her old age. Sergei became in-
terested in mathematics while in high school at
Richelieu gymnasium and independently stud-
ied analytic geometry, the basics of abstract
algebra, and mathematical analysis.

He completed his education in Paris: it took
him three years to complete a four-year course
at the Sorbonne and two years for a full course

at the École Supérieure Electrotechnique de Paris, from which he graduated as
an electrical engineer. In search of problems for independent research, Sergei
Bernstein moved to Göttingen to participate in a seminar of David Hilbert, who
invited the young colleague to take up the 19th problem concerning analytic
solutions of elliptic differential equations. Hilbert asked for a proof that all
solutions of regular analytic variational problems were analytic.

Bernstein defended the problems’ partial solution as a doctoral dissertation
before a committee consisting of Jacques Hadamard, Émile Picard, and Henri
Poincaré (Sorbonne, 1904). The thesis began with the following words: “All
the mathematicians and physicists of our day seem to agree that the field of
application of mathematics has no boundaries other than those of knowledge
itself.” The full solution to Problem 19 was obtained by Ennio de Giorgi in
1956.
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After returning to Russia, Bernstein lived in St. Petersburg for three years,
teaching mathematics in private high schools and at St. Petersburg Higher
Women’s Polytechnic Courses, then went to Kharkov, where he taught at
the Higher Women’s Courses and the university, and organized and headed a
mathematical research institute in 1929. He became a corresponding member
of the USSR Academy of Sciences in 1924 and a full member in 1929.

In 1930, at the congress of Soviet mathematicians in Kharkov, a confronta-
tion between the old professors and the new “Soviet” scientists arose. To
persuade foreign scientists (Jacques Hadamard, Arnaud Denjoy, and others)
to agree to take part in the congress, Bernstein obtained guarantees from the
Commissar of Education of Ukraine, Nikolai (or Mykola) Skrypnik, that no
political statements would be made at the congress. Nevertheless, during the
congress, the head of the Department of Algebra at Moscow State University,
Otto Schmidt, proposed to send greetings to the XVI Congress of the Commu-
nist Party. Bernstein strongly objected, Nikolai Gunter, Dmitri Egorov, and
others supported him. As a compromise, greetings from “party members” of the
congress were sent. After that, rallies were held in Kharkov at which Bernstein
was denounced as an “idealist,” a “fellow traveler,” 1 and even a “monarchist”
(in the words of the future Rector of Kharkov University, Yakov Bludov).
Everyone was forced to speak out, and only a few found the courage to refuse.
As a result of this persecution, Bernstein left for Leningrad in 1933.

In 1941, as Nazi Germany invaded Russia and Hitler’s troops besieged
Leningrad, Sergei Bernstein, together with other academicians, was evacuated;
he did not return to Leningrad after the war. He settled in Moscow and worked
at the Steklov Mathematical Institute of the Academy of Sciences until his
death. Until the spring of 1947, he gave lectures and led a scientific seminar
on constructive function theory at Moscow State University; later, from 1947
to 1957, he was the head of the Department of Constructive Function Theory.

His lecture notes on Probability Theory (1911) were reprinted several times
and his book The Present State of Probability Theory (1933) became widely
known. Both books were written for higher education institutions.

In 1942, under the direction of Sergei Bernstein, a manual for fixing
the vessel location by wireless direction finder was developed, which made
navigational calculations about ten times faster. The long-range aviation
headquarters, praising the work of the mathematicians, noted that no other
country in the world had tables equal to these in their simplicity and originality.

Sergei Bernstein gained recognition not only as a mathematician and
teacher but also as a historian and popularizer of science, reviewer, and
translator. His book The Scientific Legacy of P.L. Chebyshev is especially
noteworthy.

1 A term in Soviet political jargon meaning “a temporary, unreliable ally of the Commu-
nist regime; should be treated with suspicion.”
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The contribution of Sergei Bernstein was highly appreciated by the world
scientific community: he was a member of the Paris Academy of Sciences (only
the third Russian to become one after Peter the Great and Pafnuty Chebyshev)
and of many foreign mathematical societies. He received numerous scientific
awards in the USSR.

His contemporaries described him as a very caring, gentle, and benevolent
person, fully immersed in science, and at the same time deeply decent, honest,
and principled. In Moscow, being a member of the commission of the Presidium
of the Academy of Sciences of the USSR on “the Luzin case” 2 (1936), Sergei
Bernstein was one of the very few who openly defended Luzin. His intervention
in the fate of Nikolai Koshlyakov, a corresponding member of the Academy
of Sciences of the USSR arrested in the fabricated “case of the Union of old
Russian intelligentsia” 3 and sentenced to 10 years’ imprisonment in forced labor
camps, resulted in an improvement of Koshlyakov’s incarceration conditions:
he was provided with an enhanced diet and given a paper for work. In addition,
one of his scientific papers, which was written in the camp and miraculously
found its way to the Steklov Mathematical Institute in Moscow, was published
in 1949 thanks to the efforts of Ivan Vinogradov and Sergei Bernstein, under
the editorship of Yuri Linnik and under the pseudonym “N.S. Sergeev.”

Incidentally, it was Academician Bernstein’s integrity that prevented the
5th edition of his university textbook on probability theory from being pub-
lished. In the 4th edition, among many examples, one of Mendel’s fundamental
laws of genetics was given and substantiated. However, after genetics was
declared a pseudoscience at the infamous session of the All-Union Academy of
Agricultural Sciences in 1948 (“Lysenko Case”), Bernstein was asked to exclude
any examples related to Mendel’s laws and biological traits’ inheritance in
general from the 5th edition of his textbook. He categorically refused to do so.

Sergei Bernstein died on 26 October 1968 in Moscow and is buried at the
Novodevichy Cemetery.

Natalia Lokot
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The Bernstein Inequality
in Approximation Theory

The inequality

‖P (m)‖[−1,1] ≤ T (m)
n (1) · ‖P‖[−1,1]

for every algebraic polynomial P of degree at most n with complex coefficients
was first proved by Vladimir Markov in 1892. Here Tn denotes the Chebyshev
polynomial of degree n defined by Tn(cos θ) := cos(nθ) , θ ∈ R, and ‖f‖A
denotes the supremum norm of a complex-valued function f defined on A.
V.A. Markov was the brother of the more famous Andrei Markov who proved
the above inequality for m= 1 in 1889 by answering a question raised by the
prominent Russian chemist, Dmitri I. Mendeleev. Sergei Bernstein presented
a shorter variational proof of V.A. Markov’s inequality in 1938.

Note that T ′n(1) =n2. The picture below shows the graph of T12 on [−1, 1]
suggesting why T ′n(1) is large. The simplest known proof of Markov’s inequality

for higher derivatives is due to Richard J. Duffin and Albert C. Schaeffer [6],
who gave various extensions as well. The inequality

|P ′(y)| ≤ n√
1− y2

‖P‖[−1,1] , y ∈ (−1, 1) ,

holds for every algebraic polynomial P of degree at most n with complex
coefficients, and is known as The Bernstein Inequality. Various analogs of
the above two inequalities are known in which the underlying intervals, the
supremum norms, and the family of functions are replaced by more general
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sets, norms (or other metrics) and families of functions, respectively. These
inequalities are called Markov- and Bernstein-type inequalities. If the norms
are the same in both sides, the inequality is called Markov-type, otherwise it
is called Bernstein-type (this distinction is not completely standard). Markov-
and Bernstein-type inequalities are known on various regions of the complex
plane and the n-dimensional Euclidean space, for various norms such as
weighted Lp norms, and for many classes of functions such as polynomials
with various constraints, rational functions, exponential sums of n terms, just
to mention a few. Markov- and Bernstein-type inequalities have their own
intrinsic interest. In addition, they play a fundamental role in approximation
theory. The inequality

‖T ′‖R ≤ n‖T‖R

for all complex trigonometric polynomials T of degree at most n is also
called The Bernstein Inequality. It was proved by Sergey N. Bernstein in
1912 with 2n in place of n, but Charles Jean de la Vallée Poussin found an
error in it. Paul Nevai has done an extensive research on the early history
around The Bernstein Inequality. In his book [14] in preparation he writes
“So there is published evidence that in 1914, just before World War I broke
out, the Hungarian juggernaut produced at least four independent proofs of
The Bernstein Inequality with n. The count is as follows: Fejér and F. Riesz
have one proof each, and M. Riesz has three proofs, maybe more.” The sharp
inequality might have appeared first in a paper by Marcel Riesz [16]. Its
clever proof based on zero-counting may be found in many books dealing with
approximation theory. For real trigonometric polynomials this proof goes as
follows. Suppose that T is a real trigonometric polynomial of degree at most n
with ‖T‖R< 1 and T ′(t0)>n. Let Qα(t) := cos(nt−α), and choose an α∈R
such that Qα(t0) = T (t0) and Q′α(t0)> 0. Observe that T ′(t0)>Q′α(t0), and
hence T −Qα is a real trigonometric polynomial of degree at most n having at
least 2n+ 2 distinct real zeros in a period. Hence T −Qα must be identically
0, which contradicts T ′(t0)>n. This proof is illustrated by the picture below.
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In books, Markov’s inequality for the first derivative is then deduced by a
combination of The Bernstein Inequality and the Riesz–Schur inequality

‖P‖[−1,1] ≤ (n+ 1)‖P (x)(1−x2)1/2‖[−1,1]

for every algebraic polynomial P of degree at most n with real coefficients. It
was observed by Nevai [13] that The Bernstein Inequality for real trigonometric
polynomials and the above Riesz–Schur inequality are equivalent in the sense
that each can be obtained from the other one with the aid of brief elementary
arguments. Bernstein used his inequality to prove inverse theorems of approxi-
mation, and several other inverse theorems of approximation can be proved by
straightforward modifications of Bernstein’s method. That is why Bernstein-
and Markov-type inequalities play a quintessential role in approximation
theory. Direct and inverse theorems of approximation and related matters
may be found in many books on approximation theory, including [4, 9, 10].
Let Tn be the collection of all real trigonometric polynomials of degree at most
n. Let T :=R (mod 2π). For f ∈C(T), let

En(f) := inf{‖T − f‖T : T ∈ Tn}.
An example of a so-called direct theorem of approximation is the following. If
f is anm times differentiable function on T and f (m) ∈Lipα for some α∈ (0, 1],
then there is a constant C independent of n so that En(f)≤Cn−(m+α) for every
n. A proof may be found in [9], for example. The inverse theorem of the above
result can be formulated as follows. If m≥ 1 is an integer, α∈ (0, 1), f ∈C(T),
and there is a constant C > 0 independent of n such that En(f)≤Cn−(m+α)

for every n, then f ism times continuously differentiable on T and f (m) ∈Lipα.
The identity

T ′(θ) =
2n∑
ν=1

(−1)ν+1λνT (θ+ θν) ,

λν := 1

4n sin2(θν/2)
, θν := 2ν− 1

2n
π ,

(1)

for all complex trigonometric polynomials T of degree at most n has been estab-
lished by M. Riesz [16] and it is called the Riesz Interpolation Formula. Here,
choosing T (θ) := sin(nθ) and the point θ = 0, we obtain that

∑2n
ν=1 λν = n.

Identity (1) can be used to prove not only Bernstein’s inequality, but an Lp
version of it for all p ≥ 1. Namely, combining the triangle inequality and
Hölder’s inequality in the Riesz Interpolation Formula, and then integrating
both sides, we obtain∫ 2π

0
|T ′(θ)|p dθ ≤ np

∫ 2π

0
|T (θ)|p dθ

for all complex trigonometric polynomials T of degree at most n. This
Bernstein Inequality was extended to all p > 0 by Vitaly V. Arestov [1]. It
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followed the paper [11] by Attila Máté and Nevai, where the Bernstein factor
111/pn was proved for every 0<p< 1. A short and elegant proof of Arestov’s
result due to Manfred Golitschek and George G. Lorenz is presented in [4]. See
more on Arestov’s Theorem in [7]. For real trigonometric polynomials T the
inequality

T ′(θ)2 +n2T (θ)2 ≤ n2‖T‖2R , θ ∈ R ,

is known as the Bernstein–Szegö inequality. Various extensions and general-
izations of this inequality have also been established. There is a Bernstein
inequality on the open (or closed) unit disk D, or equivalently, on the unit
circle C of the complex plane. It states that

‖P ′‖D ≤ n ‖P‖D
for all algebraic polynomials P of degree at most n with complex coefficients.
It was conjectured by Paul Erdős and proved by Peter Lax in 1944 that

‖P ′‖D ≤ n
2
‖P‖D

for every algebraic polynomial P of degree at most n with complex coefficients
having no zeros in the open unit disk D. For Erdős, Markov- and Bernstein-
type inequalities had their own intrinsic interest and he explored what happens
when the polynomials are restricted in certain ways. It had been observed by
Bernstein that Markov’s inequality for monotone algebraic polynomials is not
essentially better than that for arbitrary algebraic polynomials. Bernstein
proved that if n is odd, then

sup
P

‖P ′‖[−1,1]

‖P‖[−1,1]
=
(
n+ 1

2

)2
,

where the supremum is taken over all algebraic polynomials P of degree at
most n with real coefficients which are monotone on [−1, 1]. This is surprising
since one would expect that if a polynomial is this far away from satisfying the
equioscillating property of the Chebyshev polynomial Tn, then there should be
a more significant improvement in the Markov inequality. In his short paper [8],
Erdős gave a class of restricted algebraic polynomials for which the Markov
factor n2 improves to cn. He proved that there is an absolute constant c such
that

|P ′(y)| ≤ min
{

c
√
n

(1− y2)2
, en

2

}
‖P‖[−1,1]

holds for every algebraic polynomial P of degree at most n that has only real
zeros outside (−1, 1), and for every y ∈ (−1, 1). This result motivated several
people to study Markov- and Bernstein-type inequalities for polynomials with
restricted zeros and under some other constraints. Generalizations of the above
Markov- and Bernstein-type inequality of Erdős have been extended in many
directions by several authors including G.G. Lorentz, John T. Scheick, József
Szabados, Arun Kumar Varma, Attila Máté, Quazi Ibadur Rahman, Narendra
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K. Govil, and Ram Mohapatra. Many of these results are contained in the
following essentially sharp result, due to Peter Borwein and Tamás Erdélyi [3]:
there is an absolute constant c such that

|P ′(y)| ≤ cmin

{√
nk

1− y2
, nk

}
‖P‖[−1,1]

for every algebraic polynomial P of degree at most n with real coefficients
having at most k− 1 zeros in the open unit disk, 0≤ k− 1≤n, and y ∈ (−1, 1).

An entire function f said to be of exponential type τ > 0 if for every ε> 0
there exists a real-valued constant Aε such that

|f(z)| ≤ Aεe
(τ+ε)|z|, z ∈ C .

In 1926 Bernstein proved that

‖f ′‖R ≤ τ‖f‖R
for all entire functions f of exponential type τ > 0. Assuming that ‖f‖R<∞,
equality holds if and only if f(z) := aeiτz + be−iτz, where |a|+ |b|= ‖f‖R. A
nice proof of this may be found in the book [15] by Rahman and Schmeisser
by using the interpolation formula

f ′(x) = 4τ
π2

∞∑
k=−∞

(−1)k

(2k+ 1)2
f
(
x+ 2k+ 1

2τ
π
)

proved by Ralph Boas in 1937.
The books listed below are some of good sources to find inequalities of

Markov-, Bernstein-, and Nikolskii-types and related results. The results
mentioned without a reference in this short note may be found with complete
proofs in some of them.

We thank Michael Mossinghoff for making the illustrating pictures. We
dedicate this survey to the birthplace of Sergei Natanovich Bernstein.

Tamás Erdélyi and Paul Nevai
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Vladimir Ivanovich Smirnov (1887––1974)

Vladimir Smirnov was born on May 29, 1887, in St. Petersburg into the
family of an archpriest, a teacher of religion at the Imperial Alexander Lyceum.
After graduating from the famous Second Gymnasium (the oldest gymnasium
in the Russian Empire) with a gold medal, he entered the Physics and
Mathematics Faculty of St. Petersburg University, from which he graduated
with a First class Diploma1 in 1910. In 1918, he defended his Master’s thesis2

(under Vladimir Steklov’s supervision). During
the Civil War, from 1918 to 1921, Smirnov
taught at Tavria University in Simferopol,
Crimea.

After the Bolsheviks took Crimea, his wife
was shot, while Smirnov escaped death by a
whisker. In 1921 he returned to Petrograd.3 In
1934, he married again, and in 1935 his son
Nikita was born. Vladimir Smirnov taught at
many educational institutions throughout the
city, and from 1929 to 1935, he worked at
the Seismological and Mathematical Institutes
of the USSR Academy of Sciences. However,
St. Petersburg (Leningrad) University, where he
worked from 1915 until his death, was his num-

ber one affiliation. During the Great Patriotic War,4 Smirnov was evacuated
to Elabuga, a town 200 kilometers east of Kazan in the Republic of Tatarstan,
together with a part of the university, where he organized a group that carried
out important defense work. He became a Corresponding Member of the USSR
Academy of Sciences in 1932 and a Full Member in 1943.

Vladimir Ivanovich was an outstanding organizer of science. On his
initiative, the Research Institute of Mathematics and Mechanics, which now
bears his name, was created at Leningrad State University. A whole array of

1 It corresponds to today’s Master’s degree with honors.
2 It corresponds to today’s PhD thesis.
3 Petrograd, Leningrad and St. Petersburg all refer to the same city. The city was referred

to as Petrograd from 1914 to 1924, Leningrad from 1924 to 1991, and St. Petersburg before
and after the aforementioned years.

4 The Great Patriotic War (1941––1945) is a term used in Russia and former Soviet Repub-
lics to describe the war between the Soviet Union and Nazi Germany during World War II.



Vladimir Ivanovich Smirnov 217

research fields and even schools appeared in Leningrad thanks to the efforts
of Vladimir Smirnov, in particular, due to the seminars he started. Among
them is the scientific seminar on Mathematical Physics, now named after V.I.
Smirnov. This seminar celebrated its 75th anniversary in 2022. Smirnov was
able to promote fields of mathematics that he had never even worked in,
such as functional analysis and spectral theory of operators, because of his
phenomenally broad education and deep understanding of mathematics as a
whole.

During the post-war years, because of the overwhelming lack of professors,
Smirnov was in charge (successively, and sometimes simultaneously) of several
departments at LSU: Elasticity Theory, Hydroaerodynamics, Complex Analy-
sis, and Real Analysis. But as soon as suitable candidates showed up, Smirnov
passed the chair to younger colleagues. He only held the chairs of Higher
Mathematics (Physics Department, since 1933) and Mathematical Physics
(Department of Mathematics and Mechanics, since 1956) permanently. They
were both departments that he had created.

Smirnov was also a consummate teacher. According to Frantisek Janouch,
“at Professor Smirnov’s lectures, mathematical functions came to life, they had
their fates, experienced their misfortunes and accidents, which made it possible
to calculate an integral or solve a differential equation.”

As Victor Zalgaller recalled,

Vladimir Ivanovich would begin with benchmark examples, with the
exposition of classical theorems, and then he would change the timbre
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of his voice and in the last 10 minutes of each lecture would expound
approximately three times as much material as he had presented
before, with all sorts of generalizations, both purely mathematical and
with the physical sense retained... Each of us could choose up to what
point we were able to understand, without the slightest affront to the
listener’s self-esteem... This amazing talent for teaching people with
different backgrounds at the same time distinguished the manner of
V.I. Smirnov’s teaching.

His life’s work was the creation of the extraordinary Course in Higher
Mathematics, which he began together with Jacob Tamarkin in the 1920s.
The work on the course lasted for more than 50 years. With time, it grew into
a real mathematical encyclopedia in five volumes which has been reprinted
many times and translated into eight languages. It would not be a stretch to
say that the creation of such a course was quite a feat.

The range of Smirnov’s scientific interests was very broad. His main works
are in complex analysis. His works on partial differential equations are also
widely known. However, according to Sergei Vallander,

he was very modest about his role in science, considering that [...] he
was mainly a catalyst of scientific life in the mathematical world, who
accelerated the processes already taking place within it.

Vladimir Smirnov made several fundamental contributions to the history of
mathematics. Thanks to him, we have a detailed history of the development of
mathematics in Russia from the 1840s to 1970. He was the editor and author of
texts on the life and work of Daniel Bernoulli, Pafnuty Chebyshev, Alexander
Lyapunov, and other outstanding mathematicians.

After the premature death of his talented pupil Ivan Lappo-Danilevsky,
Smirnov, together with Nikolai Kochin, studied his manuscripts and drafts,
filled in all the lacunae, and published 12 works under Lappo-Danilevsky’s
name. The work, which took several years, was much like the work of a fine
arts restorer and is perhaps unique in the history of science.

In the late 1950s, a systematic study of Euler’s archives — manuscripts,
letters, and notebooks — was initiated under Smirnov’s supervision. The result
was the publication of several volumes of Euler’s writings, including a 438-page
annotated index to his letters.

Vladimir Smirnov always strived to unite mathematicians in Leningrad. In
1921, he was one of the founders of the Leningrad Physical and Mathematical
Society (it was disbanded in 1930 for political reasons). In 1953, Smirnov or-
ganized a general mathematical seminar, which in 1959 became the foundation
for the revived Mathematical Society. He refused to become its President and
was unanimously elected Honorary President.

One of Smirnov’s main hobbies throughout his life was music. Although
he had no musical education, he played the piano beautifully, having learned
to play as a child from his elder brothers, who were professional musicians.
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Cover pages of the 3rd (1929) and 24th (2008) editions of “A course of higher
mathematics.”

Smirnov regularly gave home concerts, performing symphonies and quartets
arranged for piano four hands. His musical partners over the years included
Jacob Tamarkin, Dmitry Faddeev, and Dmitri Shostakovich.

He loved to take long walks and usually walked so fast that his companions
could hardly keep up with him. In his younger years, another of Smirnov’s
hobbies was the card game vint.5 He was said to have played the game with
ingenuity and skill.

Vladimir Smirnov was a deeply religious man. Although during Soviet
times practicing religion was, to put it mildly, discouraged and sometimes
even life-threatening, he was a member of the Parish Council at the Prince
St. Vladimir’s Cathedral in Leningrad for many years. It is important to note
that there was never anything ostentatious about his religiosity.

During the Stalinist terror, Vladimir Ivanovich wrote letters on numerous
occasions to the authorities and spoke in defense of arrested acquaintances.
Once, having been summoned to the NKVD,6 when he refused to confirm
slander that was being mounted against his colleague, he heard, after an eerie
silence: “And you are a very brave man!”

5 “Russian whist,” a complicated card game.
6 NKVD (The People’s Commissariat for Internal Affairs) was the leading Soviet secret

police organization from 1934 to 1946.
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A commission of the USSR Academy of Sciences on the history of mathematics and
physics. Sitting: S.I. Vavilov, A.N. Krylov, V.I. Smirnov. Standing: M.I. Radovsky,
T.P. Kravets.

The number of people who had to thank Smirnov for the opportunity to
stay in mathematics is huge. Vladimir Ivanovich fought like a lion for talented
students.

Let us end our essay with the words of Vladimir Koshlyakov:
During his long life, this extraordinary man did a lot of good, wise,
and useful things. They were as inseparable from him as he was from
them.

Darya Apushkinskaya and Alexander Nazarov
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V.I. Smirnov in complex analysis: Canonical
Factorization and other fundamental results

V.I. Smirnov (1887––1974) obtained a few most useful and basic results of
the Hardy space theory. The majority of these results were published in three
papers quoted below as [1], [2], and [3].

Some sorrowful and dramatic circumstances (mostly related to Stalin’s
“Iron Curtain”, which isolated the Russian scientists from any links with
abroad) entailed that the results were totally overlooked by the international
community for many decades (the first two papers even have been reviewed
neither in Math Rev nor in ZbMath). Nevertheless, they anticipated some most
important achievements in the Hardy space theory. These results, much later
rediscovered in the literature, were employed in an uncountable quantity of
research, everywhere where the Hardy space techniques are used.

Below, we comment mostly on the following themes:

(1) the proof of the “canonical factorization theorem” (1929),

(2) the cyclicity of “Beurling’s outer functions” (1928),

(3) an integral (“universal”) maximum principle and Smirnov classD (1932);

(4) Smirnov domains Ω in C and the Cauchy formula in E1(Ω) (1932).

Canonical Factorization Theorem

V. Smirnov’s Canonical Factorization Theorem CFT [2], states that any non-
zero Hardy class function f ∈Hp(D) , p> 0, in the unit disc

D = {z ∈ C : |z| < 1}

can be uniquely represented as the product

f = λB[f ]S

of a complex constant λ∈C, |λ|= 1, a product B of fractional linear functions
(Blaschke factor), a “G. Szegö maximal function” [f ], and a “singular zero free
function” S.
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The Blaschke factor B fo f was previously separated by F. Riesz (1923),
f =BF , F ∈Hp(D), where F has no zeros in D, and

B(z) =
∏
n

bλn(z), bλ = λ− z
1−λz

· |λ|
λ

,

where (λn)n stands for the sequence of all zeros of f in D (counted with their
multiplicities), known to satisfy the “Blaschke condition”

∑
n(1− |λn|)<∞;

b0(z) := z. The “maximal function” [f ] of f was defined by G. Szegö (1921) in
his study of the Toeplitz forms on H2(D) as

[f ](z) = exp

{∫
T

ζ + z

ζ − z log |f(ζ)| dm(ζ)

}
, z ∈ D,

m being the normalized Lebesgue measure on the torus T, and the singular
factor S of f appeared in Smirnov’s paper (without any specific name),

S(z) = exp

{∫
T

ζ + z

ζ − z dµf (ζ)

}
, z ∈ D,

where µf is a singular (with respect to m) nonpositive measure on T.
Notice that the Hardy spaces Hp(D) were defined by G.H. Hardy in 1915

and rapidly became a strategic crossroad of holomorphic function theory and
the real analysis. A fast development of the Hp-theory during the XXth
century played the central role for both disciplines.

Smirnov’s CFT is a cornerstone of the theory and a source of its most
important applications (some of them are given by Smirnov himself). For the
Hardy space theory, the CFT plays a role similar to the “fundamental theo-
rem” of algebra (factoring a polynomial in linear factors), or the Weierstrass
factorization theorem for entire functions.

However, by a joy of circumstances, V. Smirnov was not recognized during
several decades as the author of the CFT, creating a longlasting historical
injustice. In particular, in many publications, as a source for the CFT, a
reference book by R. Nevanlinna (1936) was quoted, whereas it even does
not contain such a statement. Some other researchers were disoriented with
historical remarks in influential monographs by K. Hoffman (1962) (where the
theorem was attributed to F. Riesz and G. Herglotz), and then by J. Garnett
(1980), P. Koosis (1980), and W. Rudin (1987) (in three latter books, no
attributions are given). To the contrary, V. Smirnov’s authorship was restored
in many other sources, see I. Privalov (1950), P. Duren (1970), M. Pavlovic
(2014), N. Nikolski (2020).

In fact, V. Smirnov proved the CFT for a larger class (A) (now, often
denoted N , for R. Nevanlinna) of functions f holomorphic in D and such that

sup
0<r<1

∫
T

log+ |f(rt)| dm(t) < ∞,
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exactly in the same form (here µf is simply singular, not necessarily non-
positive). He called his theorem the “parametric representation theorem”,
and insisted on the importance of free (integrability type) character of the
parameters defining a holomorphic function f : 1) a sequence (λn)⊂D with∑

n(1− |λn|)< ∞, 2) a function w = |f | ≥ 0 with log(w) ∈ L1(T), and 3) a
singular measure µf on T. Conceptually, this point of view strongly contributed
to the successful applications of the CFT to the spectral theory of Hilbert space
contractions on the Sz.–Nagy–Foias functional model.

The CFT is the principal ingredient in the proofs in A. Beurling’s Acta
Mathematica paper (1949) on invariant subspaces of the shift operator, [5].
Beurling grouped unimodular functions in the canonical factorization as
BS := fin and called fin the inner factor, speaking on λ[f ] := fout as the outer
factor, f = finfout.

Beurling’s closure problem

Beurling’s closure problem (1949)... had been solved in 1928. A. Beurling’s
just mentioned paper (1949) appeared to give a very influencial impact to the
Hp-theory (and beyond). The main analytical problem considered was the
question for which f ∈H2 the “weighted polynomials”

fP = {pf : p is a polynomial}
are dense in H2 (called the “closure problem”, and also the “cyclic function
problem”). A. Beurling’s answer (“f is cyclic if and only if it is outer”), in its
essential “if” part (the “only if” part is trivial by the CFT), in fact, was proved
in Smirnov’s paper [1]: if f is outer, fP is dense in H2, this proof is contained
in Theorem 2 of the 1928 paper, in a slightly different language; the needed
part of the proof is “(26) ⇒ (20)” in the notation of Smirnov’s paper (and it is
based on G. Szegö’s theory of weighted orthogonal polynomials, 1920/1921).

35 years later, V. Smirnov returned to the theme and used exactly the
same idea (in his 1964 book with N. Lebedev, [4, Ch. III § 2]), contributing
to the study of cyclic functions in the Bergman space L2

a(D, dxdy) with some
useful sufficient conditions for cyclicity. These facts were also overlooked by
the holomorphic space community.

An integral maximum principle

An integral maximum principle (1929), Smirnov class D, and a generic maxi-
mum principle (1932). Smirnov’s paper [3] contains the definition, properties,
and important applications of a remarkable “class D”, now often called N+:
a function f in the unit disc D belongs to D if and only if it is in N
and µf ≤ 0. Smirnov showed that

⋃
p>0H

p(D)⊂D and proved a “universal
maximum principle” (UMP): if f ∈D and (f |T) ∈ Lr(T) (1 ≤ r ≤∞) then
f ∈Hr (a preliminary form of UMP is contained already in his 1929 paper).
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Then, he found a conformally invariant description of the class D and extended
the UMP (at least for r=∞) to any simply connected domain with sufficiently
regular boundary.

Much later, H. Helson in his Lectures on invariant subspaces (1964)
developed a similar approach to the classical Phragmen–Lindelöf principles
(overlooking, as the whole community, Smirnov’s results...). We refer to [6]
for a careful analysis of these approaches and a derivation of a “most general”
Phragmen–Lindelöf principle using the Smirnov class D.

An important series of applications of the class D, initiated by Smirnov
himself [3], lies in the polynomial approximation theory: roughly speaking, if
the polynomials are not dense in a certain (weighted) holomorphic space, the
obstructions to an approximation (and so, the closure of the polynomials) can
be described in terms of the class D; we refer to [6] for details.

Smirnov domains and the Cauchy formula in E1 (1932)

In his paper [3], V. Smirnov introduced and studied an important analog of
Hardy spaces for domains Ω⊂ C conformally equivalent to the unit disc D
(and having a rectifiable boundary ∂Ω): given p> 0, the class Ep(Ω) consists
of holomorphic functions f such that

sup
0<r<1

∫
∂Ω(r)

|f(z)|pds < ∞,

where Ω(r) = ϕ(rD) and ϕ stands for a conformal mapping ϕ= ϕΩ : D→Ω.
Smirnov’s fundamental theorem claims that a holomorphic in Ω function f is in
E1(Ω) if and only if it has almost everywhere boundary limits and the classical
Cauchy formula holds. Smirnov’s spaces Ep(Ω) are largely employed in the
duality theory for extremal problems developed much later by G. Tumarkin
and S. Havinson (the 1960s).

The same 1932 paper contains the definition and some applications of what
is now called “Smirnov’s domains” (or, in written, Ω ∈ (S)): these are Ω′s
for which the derivative ϕ′Ω is an outer (maximal) function in D. V. Smirnov
showed that the polynomials are dense in the space E2(Ω) if and only if Ω∈ (S),
and similarly for the classical maximum principle:

|f(z)| ≤ sup
ζ∈∂Ω

|f(ζ)|, ∀z ∈ Ω,

holds for every f ∈ N+(Ω) if and only if Ω ∈ (S). Later on, many other
interesting and important properties of Smirnov’s domains were discovered,
see [6] for an (incomplete) list.

V. Smirnov remarked that if the argument ζ 7−→ arg(ϕ′Ω(ζ)) is in L1(∂Ω, ds)
then Ω ∈ (S), and he was inclined to the opinion that all Ω′s are Smirnov...
The first example of a non-Smirnov domain was discovered by M. Keldysh and
M. Lavrentiev (1937): every nontrivial (different from the circle T) pseudocircle
bounds a non-Smirnov domain; an example of such a curve was presented.
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An illustration to the Keldysh–Lavrentiev example of a non-Smirnov domain. The
construction is similar to the 1904 von Koch snowflake, however, the boundary is
isometric to |z| = 1, as in the famous J. Nash’s embedding theorem (1954). The
domains ∆1⊂∆2⊂ . . . provide approximations.

Later on, P. Duren, H. Shapiro and A. Shields (1966) showed that a
conformal mapping ϕ whose derivative ϕ′ is a singular inner function defines a
pseudocircle ϕ(T) if the corresponding singular measure is small and satisfies
a “Zygmund smoothness condition.”

Many other V. Smirnov’s achievements in complex analysis and their
numerous applications are overviewed in [6].

Nikolai Nikolski
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Alexander Alexandrovich Friedmann
(1888––1925)

Friedmann is best known for his two papers in which theoretical studies of
the expanding Universe were initiated. Since he used the general theory of rel-
ativity, Einstein’s reaction to his first paper was quick and negative. In a note
published in Zeitschrift für Physik, Einstein wrote: “The results concerning
the non-stationary world, contained in the work,
appear suspicious to me. In reality, it turns out
that the solution given in it does not satisfy the
field equations.” Several months later, Einstein
admitted his error and wrote back to the journal:

In my previous note I criticized
[Friedmann’s work On the curvature
of Space]. However, my criticism, as
I became convinced by Friedmann’s
letter, communicated to me by Mr.
Krutkov, was based on an error in
my calculations. I consider that Mr.
Friedmann’s results are correct and
shed new light on the subject.

Two other fields in which Friedmann’s con-
tributions were substantial are hydrodynamics
and meteorology. His work in these areas was already acknowledged during his
short life; indeed, in a letter sent from Delft in 1924, he wrote the following
about the Congress for Applied Mathematics:

Everything went well at the congress, the attitude towards the Rus-
sians was wonderful; in particular, I was included among the members
of the committee for convening the next conference. [. . . ] Blumenthal,
Kármán and Levi-Civita got interested in my and my colleagues’ work.

Friedmann was awarded the Lenin Prize posthumously in 1931 for his “out-
standing work in science.”

Alexander Friedmann was born in St. Petersburg into an artistic family; his
father was a ballet dancer and his mother a pianist. At the 2nd St. Petersburg
Gymnasium, Alexander and Yakov Tamarkin were the top two pupils in their
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class and graduated in 1906 with gold medals. Being close friends, they
were almost always together: during their university studies at St. Petersburg
University (in 1906––1910, both were students in the Mathematical Division of
the Faculty of Physics and Mathematics), and in their political activity. Both
were leaders of student strikes during the 1905 Revolution. They are always
mentioned together in V.A. Steklov’s diaries for 1908, when they attended his
lectures and visited him at his home many times, bringing their lecture notes
with them, to be looked through and then printed lithographically. The friends
also had mathematical questions to discuss with their professor; a characteristic
item in Steklov’s diaries is:

November 22. Tamarkin and Friedmann came to see me this evening
[. . . ] Kept asking me about their findings from delving deep into the
theory of orthogonal functions. They are having an article published
in Crelle’s journal. Sharp fellows! They left at half past twelve, after
supper.

The aforementioned 11-page-long paper by Friedmann and Tamarkin, pub-
lished in the Journal für die reine und angewandte Mathematik in 1909,
concerns the function [x] and Bernoulli numbers. Their interest in these
numbers began when they were still gymnasia pupils, and they sent the paper
Sur les congruences du second degré et les nombres de Bernoulli to Hilbert in
1905; it was published in Mathematische Annalen the following year.

Steklov recommended Friedmann and Tamarkin to continue their studies
for Master’s Degrees, and they completed the necessary examinations by 1913.
Then Friedmann was appointed to the Aerological Observatory located near
St. Petersburg, where he began studying meteorology, and even spent some
time in Leipzig with Bjerknes, the leading expert in theoretical meteorology,
just before World War I broke out in 1914.

Friedmann decided to join the volunteer aviation detachment and soon
began flying aircraft. He was involved in bombing raids; in a letter to Steklov
written on February 5th, 1915, he writes:

My life is progressing pretty smoothly, if you don’t count such accidents
as a shrapnel explosion twenty feet away, the explosion of an Austrian
bomb within half a foot, which turned out almost happily, and falling
down on my face and head, which resulted in a ruptured upper lip and
headaches. But one gets used to all this, of course, especially when
you see things around you that are a thousand times more awful.

Friedmann was decorated with the Cross of St. George for his courage, but
he remained a mathematician at heart even at the front lines, and developed
an approach to computing the trajectory of bombs. Since this approach was
based on Steklov’s suggestion, Friedmann reported to him: “The bombs turned
out to be falling almost the way the theory predicts.” In the summer of 1915,
Friedmann was sent to Kiev to lecture on aeronautics for pilots at the Central
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Aeronautical Station; several months later, he was appointed its Head and
moved with the station to Moscow in April of 1917. The Bolsheviks came to
power six months later and began peace negotiations with Germany, however.
The Central Aeronautical Station ceased its operations and Friedmann wrote
to Steklov about how depressed he was with the uncertainty surrounding his
future.

Fortunately for Friedmann, Perm University was established in 1916 and
Steklov, who participated in its organization, sent them a letter of recom-
mendation in February of 1918 supporting the recruitment of Friedmann,
emphasizing that “Recruiting him as an instructor in mechanics at Perm
University is, in my opinion, highly desirable. The university will find in him
a worthy lecturer and researcher.” Friedmann was elected an extraordinary
professor in the Department of Mathematics and Physics and arrived in Perm
in April 1918, where he found A.S. Besicovitch, I.M. Vinogradov, A.F. Gavrilov
and R.O. Kuzmin, who had arrived earlier from Petrograd (the name of
St. Petersburg from 1914––24).

In the autumn of 1918, the Physico-Mathematical Society was founded, and
Friedmann assumed the duties of its Secretary and member of the editorial
board of the Journal de la Société des Math. et de Phys. a l’Université de
Perm. (In the 2nd volume of this journal, Besicovitch, another member of the
editorial board, published his solution to a problem equivalent to the famous
Kakeya’s problem.) Friedmann carried out a great many tasks and duties (this
was the case with him earlier in his life as well as later on) that acted as his
proud civic contribution.
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However, Perm became a frontline city soon and was occupied by the White
Army on the 24th of December, 1918; the period of ‘Kolchakovia’ (Friedmann
used this term because admiral Kolchak was the ‘Supreme Leader’ of the
anti-Bolshevik movement in Siberia) lasted until August 1919. In January,
Friedmann was accused of being sympathetic towards the Soviet powers during
a session of the University Council; fortunately, without consequences. As
the Red Army approached Perm in the summer, the university staff, except
Besicovitch, left the city. Unlike his colleagues, who positioned themselves
against the Soviets, Friedmann returned soon, and his last letter to Steklov
from Perm, sent in November 1919, was a cry for help: “The University needs
staff!”

Friedmann’s portrait, M.M. Devyatov, [5].

In the spring of 1920, Friedmann returned to Petrograd to take up
an impressive number of appointments. He headed the newly-established
Mathematical Bureau at the Central Geophysical Observatory, kept teaching
positions at Petrograd University, the Polytechnic Institute, the Institute for
Railway Engineering and the Naval Academy; finally, he undertook research at
the Atomic Commission1 of the Optical Institute. Of course, the Mathematical

1 Atomic Commission dealt with atoms and X-rays, no idea of an atomic bomb existed
at that time.
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Bureau was his main occupation; even at the very beginning of his military
service, Friedmann had already been thinking of setting up a theoretical
department at the Observatory. To realize this project he employed a number
of brilliant young researchers, including I.A. Kibel, B.I. Izvekov, V.A. Fock,
N.E. Kochin and P.Y. Polubarinova–Kochina (the last three being future
Academicians); each researcher had his/her own topic for investigation and
the results were to be presented at the scientific seminar.

In his own studies, Friedmann considered general equations describing the
motion of a compressible fluid, important for the field of dynamic meteorology.
The work in this area had been initiated in 1916, when the brief note Sur
les tourbillons dans un liquid a température variable appeared in Comptes
Rendus. At the beginning of 1921, he completed his Master’s dissertation on
this topic; it was published lithographically in 1922 under the unassuming title
of An Essay on the Hydrodynamics of a Compressible Fluid (see its front page
below). It was in fact a comprehensive treatise reprinted as a monograph,
with Kochin’s comments, in 1934. Along with some important results, the
dissertation included many interesting open problems that were subsequently
solved by Friedmann himself and by his disciples.

Soon after returning to Petrograd, Friedmann began his studies of the
general theory of relativity, which he mentioned in a letter to P. Ehrenfest
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(Leiden) written circa the end of 1920: “I have been working on the axiomatics
of the relativity principle.” Along with his two research papers mentioned at
the beginning of this article, he published the booklet The World as Space
and Time, intended for a thoughtful but amateur readership. Another of his
projects, the five-volume monograph Fundamentals of the Theory of Relativity,
to be written in collaboration with V.K. Frederiks, was not realized due to
Friedmann’s untimely death from typhoid fever in August of 1925. A few weeks
before, he participated in a record-breaking, 7400-meter-high ascent in a hot
air balloon during which he recorded interesting meteorological and medical
observations.

Nikolay Kuznetsov
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The impact of Friedmann’s work
on cosmology

Historical introduction. The impact of Friedmann’s work on cosmology
can hardly be overestimated. By training, Friedmann was a mathematician,
but one of exceptional versatility, who made important contributions also in
other fields, such as meteorology. In the summer of 1917 and in the middle
of tumultuous events in Russia, he founded and was the first director of the
“Aeropribor” factory in Moscow, which produced tools for airplanes, and which
still exists to this day.

Nevertheless, his greatest contribution to science is undoubtedly contained
in the two pioneering papers in 1922 and 1924 which appeared in the German
journal Zeitschrift für Physik [11, 12].1 In these papers, he demonstrated
that Einstein’s field equations with a cosmological constant (called by him
Weltgleichungen, i.e. world equations) do not only allow Einstein’s 1917 static
solution with matter and de Sitter’s 1917 apparent static vacuum solution,
but also dynamical solutions describing an expanding or collapsing Universe.
The corresponding equations, today called Friedmann or Friedmann–Lemâıtre
equations, form the basis of modern cosmology. In 1923, Friedmann published
a book on cosmology in which he also presents insights into his general
philosophical ideas [13].2

In the 1920s, Friedmann’s work had little impact [8]. The main question
in those years was trying to find out whether there is an observational
difference between Einstein’s and de Sitter’s solution. Friedmann’s papers
were apparently also unknown to Georges Lemâıtre, who in 1927 wrote another
groundbreaking paper that was little appreciated at the time: he related the
formal solutions for an expanding or contracting Universe to redshifts and
thus to observations. Einstein, after having read Friedmann’s first paper, first
thought that the solutions were wrong. Later he admitted that the solutions
are mathematically correct, but (in his opinion) physically irrelevant. This
demonstrates how deeply the idea of a static Universe was rooted in people’s
imagination at the time.

1 In [11], the German transcription of the Russian name was chosen “Friedman”, but we
stick to the common practice of writing “Friedmann.”

2 The editor of the German translation [13] speculates that the title Мир как
пространство и время (Die Welt als Raum und Zeit) alludes to Schopenhauer’s opus
magnum Мир как воля и представление (Die Welt als Wille und Vorstellung).
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It is often stated that Friedmann was only interested in the mathematics
of the equations, not in their physical content. In our opinion, this is only
partially true. He was certainly strongly influenced by the mathematicians
Weyl and Hilbert, especially the latter’s idea of axiomatization.3 But in
his work he strongly emphasized that the geometry of the world should be
determined by theoretical physics and observational astronomy.4 At the end
of his 1922 paper, he gives an estimate of 1010 years for the duration of a
recollapsing Universe, which is close to the current estimate for the age of our
Universe.

Friedmann was, in particular, interested in the question of whether the
world (three-dimensional space) is finite or infinite. This motivated him to
study the case of negative curvature in 1924 [12]. He found that, in contrast
to the spatially closed case discussed in 1922, the case of negative curvature
leaves this question open. He concludes the 1924 paper with the words: “This
is the reason why, according to our opinion, Einstein’s world equations without
additional assumptions are not yet sufficient to draw a conclusion about the
finiteness of our world.” 5 The question whether it makes sense to talk about
actual infinities in physics (in contrast to mathematics) is an intriguing one and
continues to be discussed up to the present day [10], as Friedmann’s insights
continue to inspire modern research.

Friedmann’s equations6. The starting point is Einstein’s field equation

Rµν − 1
2
gµνR+ Λgµν = 8πG

c3
Tµν . (1)

Observations indicate that the Universe is approximately isotropic around our
position. These come mainly from the anisotropy spectrum of the Cosmic
Microwave Background (CMB). Adopting the Cosmological Principle (“all
places in the Universe are alike”), one is led to assume (approximate) isotropy
around every position. One can then mathematically prove that our Universe
must also be (approximately) homogeneous. The geometry of a homogeneous
and isotropic spacetime is characterized by the line element

ds2 = −c2dt2 + a2(t)
(

dr2

1− kr2
+ r2dΩ2

)
, (2)

where a(t) is the scale factor. For the parameter k, we have the possible
choices k = 0 (flat spatial geometry), k = 1 (positive curvature), k = −1

3 Friedmann had paid a visit to Göttingen in 1923.
4 In 1924, he even gave a thesis topic to his student A.B. Schechter dealing with the

question whether trigonometric measurements at astronomical dimensions can lead to a
decision between different world geometries. A paper on this was published three years after
Friedmann’s death by Frédericksz and Schechter [8].

5 The German original reads: “Dies ist der Grund dafür, daß, unserer Meinung nach,
Einsteins Weltgleichungen ohne ergänzende Annahmen noch nicht hinreichen, um einen
Schluß über die Endlichkeit unserer Welt zu ziehen.”

5 A comprehensive discussion of the material in this and the following section can be
found in many textbooks, see, e.g., [17], [16], [9] and [4].
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(negative curvature); only the latter two cases were treated by Friedmann.
Current observations favor a spatially flat Universe, although there is still a
controversy [7]. A given value for k does not fix the topology of our (spatial)
Universe, and it is a most intriguing question to determine the cosmic topology
from observations [15].

Inserting the ansatz (2) into (1), one is led to Friedmann’s equations.7
The first equation is the restriction of the general Raychaudhuri equation to a
homogeneous and isotropic Universe,

ä = −4πG
3

(ρ+ 3p)a, (3)

where ρ and p denote energy density and pressure of matter, respectively.
If matter obeys the strong energy condition ρ+ 3p≥ 0, (3) leads to concave
solutions for a(t), that is, to a world model with a singular origin. The second
Friedmann equation reads

ȧ2 = 8πG
3
ρa2− k. (4)

In contrast to (3), this equation only contains temporal derivatives up to first
order, so it has the interpretation of a constraint. In fact, it is the Friedmann
version of the Hamiltonian constraint in general relativity [14].

From (3) and (4), one can derive a third equation,

ρ̇+ 3H(ρ+ p) = 0, (5)

where H := ȧ/a is the Hubble parameter (its evaluation at the present day
is called Hubble constant, denoted by H0). The combination ρ+ p occurring
in (5) is called inertial mass density. In these Friedmann equations, we have
followed the modern practice of including the cosmological constant Λ into
the density ρ (although this was already suggested by Schrödinger in 1919),
because it contributes an “energy density of the vacuum” ρΛ := Λ/8πG. Its
equation of state reads pΛ =−ρΛ, so from (5) we see that ρΛ is constant. For
barotropic equations of state p=wρ, w 6=−1, we find from (5) the solution

ρa3(1+w) = constant, (6)

which includes as particular cases:
• dust (p= 0) −→ ρ∝ a−3,

• radiation (p= ρ/3) −→ ρ∝ a−4,

• stiff matter (p= ρ) −→ ρ∝ a−6.
By the kinematic relation a0/a= 1 + z, with a0 as the present scale factor,
we can relate ρ to the observable redshift z of objects. The case of radiation
is relevant for the early Universe, while stiff matter so far seems unrealistic.

7 From here on, we set c= 1.
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Today, the Universe is dominated by dust (about one-third) and vacuum energy
(about two-thirds), leading to the temporal evolution

a(t) = a0

(
3Ω0H0

Λ

)1/3
sinh2/3

(
3
2

√
Λ
3
t
)

, (7)

where Ω0 is today’s matter density in terms of the critical density, observa-
tionally determined to be about 1/3. Observations also indicate that the age
of our Universe is about 13.8 billion years. For large times, the evolution law
(7) asymptotes to de Sitter space.8 From observations of the CMB, there are
strong indications that our Universe underwent a quasi-exponential expansion
(with very large Λ) already very early in its history, a phase called inflation.
Inflation offers the means to explain the origin of structure in the Universe.

Instead of barotropic equations of state, one often employs dynamical
matter models, typically with a scalar field φ. In the Friedmann limit, this field
depends, of course, only on time. In the case of a massless field, it corresponds
in (4) to the choice of a density ρφ = φ̇2/2.

Beyond the Friedmann approximation. Beyond the immediate and obvious
utility of the Friedmann equations for cosmological applications there are
several important and promising directions for future development that build
on Friedmann’s achievements. For lack of space we here mention only two of
these, namely (i) their use for taking the first steps toward a theory of quantum
gravity, and (ii) the generalization of the isotropic ansatz (2) in order to search
for a fundamental symmetry of Nature.

When adapting the ansatz (2) to a quantum mechanical context one speaks
of the so-called minisuperspace approximation, in which the full superspace of
geometrodynamics, being the moduli space of all three-metrics modulo spatial
diffeomorphisms, is restricted to few homogeneous degrees of freedom such as
the scale factor a. This limit was first discussed by DeWitt in his pioneering
paper on canonical quantum gravity [6]. This is a huge simplification because
key technical issues such as the non-renormalizability of perturbative quantum
gravity can be ignored in this approximation. Furthermore, various conceptual
issues of quantum gravity and quantum cosmology can be studied. Namely,
the direct canonical quantization of the second Friedmann equation (4) leads
to a special case of the Wheeler–DeWitt equation [14, 4], here given for the
case of a massless homogeneous scalar field,[

4G~2

3πa2

∂
∂a

(
a ∂
∂a

)
− ~2

a3

∂2

∂φ2
− 3π

4G
ka

]
Ψ(a, φ) = 0,

where a particular factor ordering has been adopted. The wave function
Ψ(a, φ) is a simple example of the “wave function of the universe.” It is, in

8 For late time expansion with constant positive ρΛ one speaks of dark energy, but there
is also the possibility that the effective vacuum energy density varies with time, in which
case one speaks of quintessence. The latter is thought to originate from matter sources and
is often modeled by means of a time-dependent scalar field φ.
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particular, possible to analyse the behaviour of Ψ near the singularity where
a→ 0. The Wheeler–DeWitt equation has no external time parameter, but one
can employ the scale factor a so as to track the evolution of the matter degrees
of freedom with respect to this “intrinsic time.” (Note that the minisuperspace
Wheeler–DeWitt equation is hyperbolic with respect to a.) Key open issues
concern the physical interpretation of Ψ, the construction of a suitable Hilbert
space, and the meaning of observables; for a survey and further discussion, see
[14].

The cover page of Friedmann’s book The world as space and time.

The other extension concerns the inclusion of non-homogeneous degrees
of freedom. On the phenomenological side, the evolution of our Universe,
if approximated by a homogeneous and isotropic spatial part, is successfully
described by Friedmann’s equations, but small inhomogeneities must be taken
into account in order to understand the properties of the CMB in the framework
of cosmological perturbation theory. Furthermore, a precise understanding of
the formation of galaxies and clusters of galaxies requires the numerical treat-
ment of the Einstein equations (1) and their Newtonian limit. Incorporating
inhomogeneities is likewise crucial for a better understanding of the origin
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of the Universe, because inhomogeneities scale like a−6, like stiff matter, and
thus dominate very close to the Big Bang singularity. This is a crucial issue for
inflationary cosmology, which hinges on the ansatz (2). Finally, there remain
difficult issues related to defining a generally covariant averaging procedure
in Einstein’s theory that would provide a rigorous basis for the Friedmann
approximation [3].

On the more mathematical side, a key insight came from the Belinski–
Khalatnikov–Lifshitz (BKL) analysis [1, 2] of the generic behavior of solutions
of Einstein’s equations near a spacelike singularity. There, one generalizes the
ansatz (2) to

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2,

thus giving up isotropy, but retaining spatial homogeneity. A surprising
result to come out of this analysis is the appearance of chaotic oscillations
of the metric coefficients a, b, c as one approaches the singularity. This result
indicates that the “near singularity limit” of the metric exhibits a far more
complicated behavior than inspection of, say, the Schwarzschild metric would
suggest, thus also showing the limitations of the assumption of isotropy.

The BKL analysis has been generalized in many directions. In particular,
a closer study of the BKL limit has revealed evidence for a huge infinite-
dimensional symmetry of indefinite Kac–Moody type, vastly generalizing the
known duality symmetries of supergravity and string theory. This novel
symmetry can possibly serve as a guiding principle towards unifying the
fundamental interactions [5].

Claus Kiefer and Hermann Nicolai
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Jacob David (Yakov Davidovich)
Tamarkin (1888––1945)

Jacob Tamarkin’s research interests were very wide, and this was reflected
in the topics of his research: number theory and function theory, general
theory of summability and summability of Fourier series, moments problems
and differential and integral equations, boundary value problems and Green’s
formula, problems of mathematical physics and approximation theory. All
these works dealt with the most important problems of modern mathematics,
and the results they yielded immediately resonated with the research of
contemporaries and followers, which undoubtedly contributed to the further
development of mathematics. Twenty-two of his students defended their

theses; many of them became well-known pro-
fessors of mathematics (e.g., Elmer Tolsted).
His special lectures for postgraduate students
were unique and updated annually, and he used
the latest articles from Polish, French, German,
English, and Russian scientific journals to pre-
pare them.

Jacob Tamarkin was born in Chernigov into
a family of a physician but grew up in St. Pe-
tersburg, where he studied at one of the best
high schools, The Second St. Petersburg Gym-
nasium, from which he graduated with honors
in 1906. He was taught mathematics by Jakov
Jodynsky, a remarkable teacher, who influenced

his students to begin studying the basics of higher mathematics and to attend
a city seminar for gymnasium students, with classes given by university
professors, including Andrei Markov. In 1906, together with his classmate
and friend Alexander Friedmann, the 18-year-old Tamarkin wrote his first
scientific paper on Bernoulli numbers, which was published in the German
journal Mathematische Annalen (see [1]).

The desire to study mathematics led the friends to the Mathematics De-
partment of the Physics and Mathematics Faculty of St. Petersburg University,
where they studied number theory intensively in the scientific circle headed by
Yakov Uspensky. In their second year, in 1909, the paper Quelques formules
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concernant la théorie de la fonction [x] et des nombres de Bernoulli, written
by Tamarkin and Friedman, was awarded a gold medal and was published in
another serious periodical Journal für die reine und angewandte Mathematik
on the recommendation of David Hilbert (see [2]).

In addition, Jacob Tamarkin and Alexander Friedmann were actively in-
volved in the work of the publishing committee at the Faculty, taking notes
of Vladimir Steklov’s lectures and lithographing them. They also set up a
mathematical reading room and a mathematical circle where they studied the
results of the latest research by Western scientists, in particular, in the theory
of orthogonal functions. From 1907, Tamarkin and Friedmann (they were
called “the Second Gymnasium boys”) attended Paul Ehrenfest’s seminar on
new physics.

During his final year at University, Tamarkin studied the problem of vibra-
tion of elastic solid rods and thin plates under Vladimir Steklov’s guidance, who
recommended leaving him to prepare for a professorship (1910), because “Mr.
Tamarkin passed perfectly all the tests, has sufficient knowledge of French and
German, reads mathematical books in English and Italian... In twenty years
of my teaching activity, I have not met such gifted young people [Tamarkin
and Friedmann]... They must, by all means, be retained for science and given
the opportunity to devote themselves to scientific work...”

From 1913 to 1919, Tamarkin taught at higher educational institutions in
Petrograd: the Institute of Transport Engineers, the Electrotechnical Institute,
and the Polytechnical Institute. Having been invited in 1919 to take up a
professor’s position at Perm University, he left for Perm, in the hope of a more
peaceful and secure existence in the aftermath of the war, together with his
wife, who was sent there by Petrograd University as a secretary. In Perm, he
lectured, took part in setting up the office for approximate computations, and
briefly served as dean of the Faculty of Physics and Mathematics.

But soon the civil war reached the Urals, and Perm was passing from the
Whites to the Reds1 and back... When Tamarkin was sent to Petrograd and
Moscow to purchase equipment for the office for approximate computations in
March 1920, he did not return to Perm. On May 20, 1920, Steklov made a
record: “At 11.00, Tamarkin and Friedmann appeared unexpectedly, traveling
for 12 days in a special teplushka.” 2 They were carrying books which the
library of Perm University was returning to Petrograd and also some food,
which had almost been requisitioned: the authorities fought “speculators” and
“bag people” 3 at the time. Everything, however, was sorted out.

1 The Whites was a loose confederation of anti-communist forces that fought the com-
munist Bolsheviks, i.e., the Reds, in the Russian Civil War of 1917––1922/1923.

2 A heated freight car used for transportation of people.
3 A “speculator” was a person, who, basically, traded with the intent of gaining profit,

which was considered illegal since prices were fixed. “Bag people” referred to persons doing
small trade for personal profit, recognizable by their large sack.
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In Petrograd, Tamarkin resumed teaching at his previous institutions, to
which he added the Naval Academy, the Central Weather Bureau, the Physics
and Technology Institute, and the Atomic Commission4 at the State Optical
Institute. The reason for such an extensive list of jobs was simple: he had
a family to support (his son Pavel was born in 1922), and his salary was
accompanied by a set of ration cards needed to survive.

Jacob David was not only successful in science, publishing a large number
of papers on various questions of applied mathematics together with Vladimir
Steklov, Alexander Friedmann, Jacob Besicovitch, Grigory Fichtenholz, and
Aleksei Krylov, but also wrote textbooks for students.

Tamarkin’s Menshevik5 past, the GPU’s6 interest in him, well-founded fears
for his family’s life, and fear of famine led him to consider emigrating. His final
decision to leave the country was probably also influenced by his meeting with
James (Yakov) Shohat, at the International Congress of Mathematicians in
Toronto in 1924. Shohat had already left Russia by that time and was teaching
at the University of Michigan.

In 1924, Jacob Tamarkin crossed the Latvian border with professional
smugglers and came before the American consul, who doubted at first that
a strange visitor was a professor of mathematics from Petrograd and tried to
examine him. Afterward, Tamarkin often told his American students about
this “exam” (the consul asked the equation of the ellipse and something else
from analytical geometry), whose positive outcome played such an important
role in his later fate.

In March 1925, Tamarkin reached the shores of America by ship, and the
first day of acquaintance with the USA remained in his memory: he often
shared these unforgettable impressions with his friends. Straight “from the
ship to the ball”,7 he, a passionate music lover with a hunger for music, went
to a concert at the New York Philharmonic to hear a Brahms symphony, and
after the performance allowed himself the “Royal Banana” — an enormous ice
cream with all sorts of sauces and gravies.

In exile, Jacob Tamarkin lived and worked in the USA, first at Dartmouth
College (1925––1927), then at Brown University (1927––1945), where he lectured
on integral equations and topological groups, theories of series and of polyno-
mial approximation, partial differential equations and subharmonic functions.

4 It was created in 1920 by Dmitri Rozhdéstvenski and comprised many leading scientists
such as Ioffe, Khvolson, Krutkov, Krylov, Friedmann etc.

5 The Mensheviks had used to be one of the three dominant factions in the Russian
socialist movement, the others being the Bolsheviks and Socialist Revolutionaries. Tamarkin
was a member of the Mensheviks faction in 1905.

6 The GPU, short for Glavnoe Politicheskoe Upravlenie (State Political Directorate), was
the intelligence service and secret police.

7 It is a quotation from Alexander Pushkin’s Eugene Onegin, meaning “to get unexpect-
edly from mundane circumstances to more solemn or strictly official.”
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The American scientific community highly valued Jacob Tamarkin’s contri-
bution. His obituary said, “He appeared as a stranger on our shores two decades
ago, and soon began to play an active role in American mathematical life...”
(cited by [6]). Tamarkin was a board member (from 1931) and vice-president
(from 1942––1943) of the American Mathematical Society, a member of the
American Mathematical Association, and the American Academy of Arts and
Sciences, one of the initiators and editor of the abstracts journal Mathematical
Reviews, and on the board of the German abstracts journal, Zentralblatt für
Mathematik, where he published many reviews.

His colleagues valued him for his erudition, critical mind, and readiness to
help and support the authors of new ideas. It was Tamarkin who persuaded
Norbert Wiener, the future “father of cybernetics,” to present his results
concerning Tauberian theorems systematically. Friends and acquaintances
loved the cheerful character of Tamarkin, loved his hospitable home with its
constant musical concerts and unprecedented Russian hospitality, calling him
behind his back simply “J.D.” (for Jacob Davidovych).

Natalia Lokot
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On the works of Ya.D.Tamarkin, their
influence and development in asymptotic
theory and spectral theory of operators

Yakov Davidovich Tamarkin (Jacob David Tamarkin) entered the Mathe-
matics Department of the Physics and Mathematics Faculty of St. Petersburg
University in 1906. Already in his first years of study at the university, he
showed outstanding ability for research work in mathematics and, together
with his friend A. Friedmann, published two articles in German journals Math-
ematische Annalen and Journal für die reine und ungewandte Mathematik. It
should be noted that these first works were related to number theory and
Diophantine equations. They were highly appreciated by specialists, but did
not significantly affect his further interests in mathematics. V.A. Steklov
became his scientific advisor, and Yakov was attracted by the problems of
expanding functions in series of eigenfunctions of the Sturm–Liouville equation
and the fourth-order equation describing the vibrations of a rod. These
questions were of the greatest interest to V.A. Steklov at that time. Note that
Steklov [1, 2] was the first to prove the possibility of expanding an arbitrary
continuously differentiable function vanishing at the endpoints of a segment
in a series of the eigenfunctions of the Sturm–Liouville problem with Dirichlet
conditions. This theorem of Steklov anticipated the famous Hilbert–Schmidt
theorem on the representation of an arbitrary function from a Hilbert space
by a series in the eigenfunctions of a self-adjoint operator. Note that Steklov’s
and Hilbert–Schmidt’s theorems are different. In the first theorem, the uniform
convergence, in the norm of the space of continuous functions, is asserted; in
the second theorem, the convergence is in the norm of the space of square-
summable functions L2.

V.A. Steklov highly appreciated Tamarkin’s bright talent and recommended
him to stay and prepare for a professorship. Since 1910, Tamarkin had been
teaching at St. Petersburg University and other universities of St. Petersburg,
he had been closely cooperating with V.A. Steklov, A.A. Friedmann, G.M.
Fichtenholz, A.N. Krylov. He had written several joint papers with these
famous mathematicians and he had independently published the book The
Course of Analysis. But the main work was his master’s thesis, published
as the book [3] later in 1917. Tamarkin subsequently published some of its
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fragments together with A. Besicovitch [4] in German, and later he presented
the main results in a more concentrated form in [5] in English. An important
addition to these works was the article [6], where it was essentially proved
(in the particular case of boundary value problems for ordinary differential
equations) the now well-known theorem on a holomorphic operator function.

After emigrating to the United States in 1924, Tamarkin quickly became
one of the recognized international authorities in mathematics. He wrote joint
works with M. Stone and A. Zygmund. His main co-author was the young,
brilliant mathematician E. Hille, who began to work with Tamarkin essentially
as his student. Later, Hille gained international recognition as one of the
founders of such an important section of modern functional analysis as the
theory of operator semigroups.

The main results of Hille–Tamarkin’s works are devoted to the summation
theory of the Fourier series by various methods. The results of these works at
one time were highly appreciated. But after the publication of the encyclopedic
monographs of A. Zygmund and N.K. Bari the previous articles and books
were cited less frequently. Over time, the relevance of this topic has decreased.
However, the book [3] has a lucky destiny. This book is the main one in
Tamarkin’s scientific heritage and is still widely cited in works on the theory
of ordinary differential operators. There are several reasons for this, below we
give more details about these reasons as well as about the results obtained in
[3].

The key problem is to obtain asymptotic expansions for solutions of ordinary
differential equations with a large (spectral) parameter. Asymptotic theory is
the main tool for investigating the spectral characteristics of ordinary differ-
ential operators and studying the convergence of expansions in eigenfunctions
of such operators. To the best knowledge of the author, the first formulas for
large eigenvalues of the Sturm–Liouville problem were obtained by Horn [7]
(see also Horn’s earlier works referenced in [7]). Horn considers the following
self-adjoint Sturm–Liouville problem:

d
dx

(
p(x)

dy

dx

)
+ q(x)y = λ2ρ(x)y, (1)

y′(0) = hy(0), y′(1) = Hy(1), h, H ∈ R, (2)

where p, q, ρ are smooth functions, p and ρ are positive on the interval [0, 1].
Horn reduces (1) to an integral equation and uses the method of successive
approximations to show that there exists a pair of solutions to this equation
with the following asymptotic representation on the positive semiaxis:

y±(x) = e±λβ(x)
(
ϕ0
±(x) +

ϕ1
±(x)

λ
+ . . .

)
, λ ∈ R+, λ → ∞, (3)

where β(x) =
∫ x

0

√
ρ(t) dt. Substituting these solutions into the boundary

conditions, Horn finds the now well-known asymptotic formulas for the large
eigenvalues and the corresponding eigenfunctions. Definitely, this was a
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significant achievement of its time. Moreover, in contrast to numerous previous
works on the asymptotic theory (for asymptotics not in a large parameter, but
in an independent variable), Horn understood and substantiated that solutions
(3) not only formally satisfy equation (1), but they are real solutions to this
equation.

Horn’s work served as a source for the general theory developed by
J. Birkhoff [8], [9]. He considered the following general equations with a large
parameter:

dn

dxn
+λpn−1(x, λ) d

n−1

dxn−1
+ . . .+λnp0(x, λ)y = 0, (4)

where the functions

pj(x, λ) =

∞∑
k=0

pjk(x)λ−k

are analytic for large |λ| and smooth in x on a finite interval [a, b]. If pjk(x)≡ 0
for k> j, then we obtain the following equation with polynomial dependence
on the large parameter λ:

ln(y) +λln−1(y) + . . .+λn−1l1(y) +λnl0(y) = 0, (5)

where

lj(y) = pj0(x)y(j) +pj1y
(j−1) +.. .pjj(x)y, pn0(x)≡ 1, j= 0,1, .. .,n−1, (6)

are differential expressions of order j. It is clear that the leading coefficients pj0
play a central role in the studies of the asymptotic behavior for (5). Equation
(5) is associated with the following characteristic equation:

ωn + pn−1,0(x)ωn−1 + . . .+ p1,0(x)ω+ p0(x) = 0.

If the roots ωj(x) of the above equation depend on x, then no significant results
are obtained. If ωj are constants, then the equations

Reλωk = Reλωj , k 6= j,

define on the complex plane C straight lines passing through the origin and
splitting the plane C into sectors Γs (their number is at most n2−n). Birkhoff
proves that in each sector Γs, there exists a fundamental system of solutions
to equation (4) with the following asymptotic representations:

yj(x, λ) = eωjλx
(
τ0(x) +

τ1(x)

λ
+ . . .

)
, j = 1, . . . , n, (7)

as λ→∞, λ ∈ Γs. One can define the functions τk in the above expansions
sequentially via the functions pjk in (4) and their derivatives, although the
information on how to define them is not specified by Birkhoff.

Next, Birkhoff considers an important special case where all differen-
tial expressions lk(y) in (5) are equal to zero for k = 1, . . . , n − 1 and
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l0(y) = q0(x)y, q0(x)≡ 1. This case corresponds to the eigenvalue problem
for the following general ordinary differential operator of order n:

y(n) + qn−1(x)y(n−1) + · · ·+ q1(x)y′+ q0(x)y = −λny,

to which Birkhoff adds boundary conditions of the form

Uj(y) =
n−1∑
k=0

akjy
(k)(0) + bkjy

(k)(1) = 0, j = 1, 2, . . . , n, (8)

where akj and bkj are arbitrary numerical coefficients. For such operators
(boundary value problems) Birkhoff defines the notion of regularity, the defi-
nition involves the coefficients akj , bkj and the function qn−1. For the regular
operators, he obtains asymptotic formulas for the eigenvalues and proves that
the inverse to a regular operator is an integral one, whose kernel G(x, ξ, λ)
(called the Green’s function) admits the following estimate:

|G(x, ξ, λ)| 6 const |λ|1−n

outside disks of fixed radius centered at the eigenvalues. He proves that any n
times differentiable function f subject to boundary conditions is representable
by a uniformly converging series in the eigenfunctions and associated functions
of the operator.

These works are definitely a huge step forward in comparison with the
results of Horn on the operator l(y) = −(p(x)y′)′ + q(x)y with the Sturm
boundary conditions y′(0) +hy(0) = 0, y′(1) +Hy(1) = 0, under the additional
assumption that the functions p and q are real-valued, h and H are real and,
hence, the operator is self-adjoint.

Based on the outlined prehistory, we are now in a position to describe the
contribution of Ya.D. Tamarkin to the development of the asymptotic theory.
Tamarkin [3] considered the following systems of ordinary differential equations
of the first order:1

y′+Q(x, λ)y = λA(x)y, x ∈ [a, b], (9)

where y = (y1, y2, . . . , yn), Q and A are n× n matrices with elements suffi-
ciently smooth in x, the matrix Q, as a function of λ, is analytic at infinity
with a regular point, the matrix A is reducible to the following diagonal form:

A(x) = diag(a1(x), a2(x), . . . , an(x)), ak(x) 6= aj(x) for k 6= j. (10)

Under the above condition on A, it is not possible to obtain significant results.
However, for the important case where the diagonal of the matrix A contains
collinear functions aj(x) = ajρ(x), ρ(x) > 0, and the (complex) numbers aj
are pairwise different, Tamarkin develops a sufficiently complete theory. In
this case, the lines <(ajλ) =<(akλ), k, j = 1, . . . , n, k 6= j, split the complex

1 Schlesinger [10] earlier considered systems of the first order with a large parameter, but
his results did not have a sufficiently complete form.
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λ-plane into several (at most n2 − n) sectors Γl; and he proves that in each
sector, there exists a fundamental matrix of solutions of the following form:

Y(x, λ) = {yjk(x, λ)}nj,k=1 = eakλxτk(x) (δkj + rjk(x, λ)) , (11)

where δkj is the Kronecker symbol, |rjk(x, λ)|=O
(
λ−1

)
uniformly for x∈ [a, b]

and λ→∞ in the selected sector Γl. Tamarkin like Horn and Birkhoff shows
that the solutions with the indicated asymptotics are genuine and not only
formal. Next, in the case under consideration, he introduces the notion of
regularity for the boundary value problem generated by equation (9) with the
following boundary conditions:

U0y(0) +U1y(1) = 0, (12)

where U0, U1 are numerical n× n matrices. For the regular problems, he
proves that the spectrum is discrete and obtains the following estimate for the
Green’s function of the inverse operator:

|G(x, ξ, λ)| 6 const

outside disks of fixed radius centered at the eigenvalues; he proves a theorem
on expansion of a smooth vector function, subject to the boundary conditions,
into a uniformly converging series in eigenfunctions and associated functions.

Next, Tamarkin starts the study of boundary value problems generated by
equations (4), (5) and the boundary conditions (8). He defines the regularity of
such boundary value problems (Birkhoff gave the definition of regularity only
for a linear operator) and proves that an arbitrary smooth function, subject
to boundary conditions, decomposes in a series in terms of the root functions
of the problem. However, he does not observe that the decomposition is not
unique in this case. Tamarkin obtains these results by reducing the problem
(5; 8) to the system (9; 12). Thus, the results obtained for systems are more
general than those for boundary value problems polynomially depending on
the spectral parameter. However, the problems with a polynomially dependent
spectral parameter were rapidly developed later and contributed to the frequent
citation of Tamarkin’s book [3]. More details are provided below.

Consider the following general equation:

A0
dnu
dtn

+A1
dn−1

dtn−1
+ . . . An−1

du
dt

+Anu = 0, u = u(t), (13)

where t > 0 and Aj are operators in a Hilbert space H. The equation is
given in an abstract form, however, we mean that Aj are differential operators
on Ω⊂Rn defined in the space H =L2(Ω). If (13) is a hyperbolic equation
in the variables (t, x), x= (x1, . . . , xn)∈Ω, then it is natural to formulate the
Cauchy problem with the following n initial conditions:

u(0) = f0, . . . , u(n−1)(0) = fn−1. (14)

Solving equation (13) by the Fourier method (by substitution
u(x, t) = eλtv(x)), we obtain the following spectral problem with nonlinear



250 On the works of Ya.D.Tamarkin

spectral parameter (polynomial operator pencil):

(λnA0 +λn−1A1 + · · ·+λAn−1 +An)v(x) = 0. (15)

The eigenfunctions vk corresponding to the eigenvalues λk of this pencil
generate the elementary solutions uk(x, t) = eλktvk(x) of equation (13). If we
represent a solution to problem (13; 14) as the series u(x, t) =

∑
k ckuk(x, t),

then the initial conditions are equivalent to the following equality:∑
k

ckvk(x) = (f0, . . . , fn−1), (16)

where ck are numerical coefficients and vk = (vk, λkvk, . . . , λ
n−1
k vk) are vector-

functions in the space Hn =H ⊕ . . . ⊕H, they are called Keldysh’s derived
chains (hereinafter, for simplicity, we assume that the pencil (15) has no
associated functions). It was M.V. Keldysh [11, 12] who introduced the concept
of derived chains and posed the following problem of multiple completeness:
Under what conditions does the pencil (15) have in the space Hn, consisting
of n copies of H, a complete system of derived chains {vk}k? Clearly, the
completeness property guarantees that the initial conditions can be satisfied
only with certain arbitrary accuracy by considering finite sums of elementary
solutions. To construct exact solutions, it is necessary to prove expansion
theorems or theorems on the basis property for the derived chains.

If (13) is a hyperbolic equation, then the spectrum of the pencil (15)
lies in a strip containing the imaginary axis; all derived chains are allowable
in expansion (16), since all elementary solutions uk(x, t) = eλktvk(x) in this
case grow not faster than a finite order exponential as t→∞. If (13) is an
elliptic equation (we have n= 2m in this case), then it is necessary to take
elementary solutions with Reλk< 0 (damping solutions) and certain solutions
with Reλk = 0 (the selection of such solutions is based on the radiation
principles for specific physical problems; the concept of a sign characteristic
for a real eigenvalue is introduced for abstract problems).

Therefore, we arrive at the so-called half range problem in the spectral
theory of operator pencils. In particular, we have the following important
problem: Is the system of half-length derived chains vk = (vk, . . . , λ

m−1
k vk),

constructed from only the selected half of the eigenfunctions, complete in the
space Hm, m=n/2?

This problem is closely related to the factorization of operator pencils,
namely, to the problem of possible decomposition

A(λ) = A−(λ)A+(λ),

where the degree of the pencil A±(λ) is m=n/2, and the spectrum of A+(λ)
contains all eigenvalues of the pencil A(λ) in the right half-plane and certain
eigenvalues on the imaginary axis. Thus, a series of sophisticated non-ordinary
problems arise, these problems now belong to the general theory of non-
selfadjoint operators. Even in the case of a finite-dimensional space H (i.e.,
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for matrix coefficients of operator pencils), the solutions to these problems are
complicated.2

The first significant paper, in which the foundations of the analytical
direction in the theory of non-selfadjoint operators were built, was written by
M.V. Keldysh [11] in 1951. Detailed proofs of the corresponding results were
published only 20 years later in 1971; see [12]. In particular, Keldysh proves
that, under a compact perturbation of a self-adjoint operator, the system of
eigenvectors and associated vectors preserves the completeness property. More
precisely, the system of eigenvectors and associated vectors of A= (I +S)T is
complete if S is a compact operator, I is the identity operator, T = T ∗ is a
finite order operator, that is,

∑
λ−pk <∞ for certain p<∞, where λk are the

eigenvalues of T , and T is assumed to be an unbounded self-adjoint operator.
Observe that in the works of Keldysh and other mathematicians up to the 80s,
the results were presented for more specific operators. In [11, 12], Keldysh also
considers the following operator pencils:

A(λ) = A0 +λA1 + . . . , +λnAn,

where

A0 = I+S0, Aj =SjT
j , An = (I+Sn)Tn, Sj are compact operators, j= 1, .. .,n,

T is a finite order operator; now such operator pencils are called Keldysh’s
pencils. Keldysh shows that the system of eigenvectors and associated vectors
of such pencils is n-fold complete in the space Hn, that is, the derived chains
mentioned above form a complete system in the space Hn. The proof is
based on a very complex analytic machinery, the key result is the following
statement: The resolvent A−1(λ) of the Keldysh pencil under consideration
is a meromorphic operator function of finite growth order p. This is a deep
result, requiring significant preliminary work. Namely, we have to define the
notion of a regularized determinant for an operator of finite order p, develop
the theory of singular numbers of compact operators (or unbounded operators
with discrete spectrum), show that this determinant is an entire function of
order 6 p, and obtain estimates for the resolvent of a finite-order operator for
the case where this operator has no eigenvalues.

Clearly, Keldysh did not work from scratch. Papers on characteristic
determinants and perturbation determinants for nuclear operators and finite
order operators were published earlier. But there were no effective estimates.
T. Carleman [13] used the estimates for the singular numbers of operators
obtained by H. Weyl to study a Volterra Hilbert–Schmidt operator, i.e., an
operator of order 2 with no eigenvalues. But there were no estimates for
the resolvents as meromorphic functions, moreover, for the operator functions
nonlinearly depending on the spectral parameter.

2 The factorization problem for polynomial operator pencils with matrix coefficients is
the subject of articles and books by many mathematicians, we mention works of I. Gohberg,
R. Kaashoek, P. Lancaster, and L. Rodman.
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Keldysh [11, 12] refers only to Birkhoff’s articles [3, 4], Tamarkin’s book [3]
and Carleman’s article [13]. Problems with a nonlinear spectral parameter were
considered by Birkhoff and Tamarkin, but remained a “thing in itself” until the
appearance of [11]; their connections with partial differential equations were
not clear. Paper [11] had changed the situation dramatically. Topics related
to the problems of completeness and basicity of eigenvectors of non-selfadjoint
and normal operators attracted the attention of many famous mathematicians,
in particular, I.M. Gel’fand, M.G. Krein, I.C. Gohberg, F. Bauder, S. Agmon,
V.B. Lidsky, A.S. Markus, V.I. Matsaev, M.S. Agranovich and others. The
history of the problem and the corresponding results are presented in the books
by Naimark [14], Gohberg and Krein [15], Markus [16], in the reviews by
Radzievsky [17] and Agranovich [18]. A detailed account of the history of the
topic, including recent results, is available in author’s article [19].

Although Birkhoff was the first to introduce the notion of a regular ordinary
differential operator and to consider nonlinear (in particular, polynomial)
spectral problems, the most important notion of regularity for the polynomial
spectral problems was introduced by Tamarkin [3]. Only almost half a century
later, the notion of regularity for partial differential operators appeared in the
works of Ya.B. Lopatinskii [20] and other mathematicians. The importance
of the concept of regularity is explained by the following phenomenon: the
estimates obtainable for their resolvents are similar to those known for the self-
adjoint operators. Estimates for the resolvent of a pencil of partial differential
operators were obtained by S. Agmon [21] and independently, in a more general
form, by M.S. Agranovich and M.I. Vishik [22]. A modern exposition of the
corresponding theory, not only in L2, but also in Lp spaces, can be found in
Triebel’s book [23].

As already mentioned, the concepts of multiple completeness, multiple
expansions, and multiple basicity arise in the study of polynomial spectral
problems. However, the study of multiple decompositions in the spaces Hn

consisting of n copies of the original space H (as considered by Keldysh) is
not natural. It was noted in [24] for pencils of ordinary differential operators
and in [25] for general operator pencils in a Hilbert space H that, in general,
there are no theorems on the basis property for the Keldysh derived chains in
Hn. The point is that the linearization of pencils in Hn leads to operators
that are not closable in this space. One should note that it is natural to
require that the functions from the initial conditions (14) belong to spaces
of different smoothness (the initial function fj must belong to a space of
greater smoothness than the function fj+1 defining the next derivative). In
the abstract case of operator pencils given by (13), it is reasonable to impose
natural restrictions on the coefficients, for example, to require that Aj =BjT

j ,
where Bj are bounded operators and T is a self-adjoint positive operator used
to construct the scale of Hilbert spacesHθ =D(T θ), θ > 0, H0 =H; here, D(T θ)
is the domain of the operator T θ. It is natural to assume that the smoothness of
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the initial functions in the collection f = (f0, f1, . . . , fn−1) uniformly decreases
as the index increases. Therefore, it is natural to embed the vector-function f
not into Hn, but into the sum

Hθ+n−1⊕Hθ+n−2⊕ . . .⊕Hθ

of spaces of variable smoothness for certain θ > 0. The choice of the parameter
θ should take into account theorems on traces in the abstract Sobolev spaces
Wn
p (0,∞; H); see [26]. This approach yields results on multiple completeness

and basis property, which harmoniously combine the methods of interpolation
theory, trace theory, perturbation theory, modern theory of equations in
Hilbert and Banach spaces intensively developed after the publication of the
fundamental work by Agmon and Nirenberg [27].

The problem of completeness, minimality, and basicity for the Keldysh de-
rived half-length chains (the half range problem) for self-adjoint or dissipative
operator pencils is also solved in the sum of spaces of variable smoothness
(for n > 2, clearly). However, its solution is more difficult and requires the
development of new ideas. The results available on this problem are presented
in the author’s work [24].

The most significant development of Tamarkin’s theory of boundary value
problems for ordinary differential equations with polynomial dependence on
the spectral parameter was obtained in [24]. We have already noted that
Tamarkin’s theorem on the expansion of a smooth function in a series in
terms of the eigenfunctions of a boundary value problem does not ensure
the uniqueness of the expansions and does not harmonize with applications.
Multiple expansions should be considered. In this case, it is important to select
an appropriate space, in which we consider multiple expansions; this question
has already been discussed in the abstract setting. Special difficulties arise if
the boundary conditions also depend on the spectral parameter: the previously
outlined abstract approach does not work in this case. In [24], a general
approach to the boundary value problems with a polynomial presence of the
spectral parameter was proposed; this method was later transferred in [28, 29]
to similar problems with partial derivatives, without significant changes. A
construction for linearizers of the boundary value problem (5), (8) was proposed
in the general case, where the coefficients not only of the equation, but also of
the boundary conditions akj , bkj depend on λ polynomially.

The most significant result of [24] is as follows. For any integer r> 0 and
for sufficiently smooth coefficients of equation (5) (the smoothness is specified
in terms of r), one can construct a linear operator Lr in a subspace Wr

r,U

of W r+n−1
2 ⊕ . . . ⊕ W r

2 + CNr (here, W k
2 = W k

2 [a, b] is the Sobolev space
and Nr > 0 is an integer), which linearizes the boundary value problem; in
particular, the spectra of the problem and Lr coincide, and the eigenfunctions
and associated functions of the problem coincide with the first coordinates of
the eigenfunctions and associated functions of the operator Lr. Constructions
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of the operator Lr and subspaceWr
r,U are presented explicitly. The number Nr

monotonically decreases as r increases, Nr = 0 for sufficiently large r> r0. If
the boundary value problem is regular (the definition of Tamarkin’s regularity
[3] is refined and simplified), then the eigenfunctions of the linearizer Lr form
an unconditional basis (possibly of finite-dimensional subspaces of bounded
dimension) in the space Wr

r,U . In particular, for large r, the Keldysh derived
chains form an unconditional basis.

Relatively recently, there has been a revival of interest in the study of
operators generated by the first order systems studied by Tamarkin [3]. Djakov
and Mityagin [30] prove that the eigenfunctions of the operator, generated by
a 2× 2 Dirac system with L2-potential and regular boundary conditions, form
an unconditional basis (possibly of subspaces of dimension at most 2) in the
space (L2)2. This theorem for L∞-potentials is deduced from general results
of Markus and Matsaev published in the 1980s (see [19]). A weaker condition
on the potential requires the development of a more subtle proof technique in
[30]. Malamud and Oridoroga [31] establish a theorem on the completeness of
the eigenfunction system of the operator generated by system (9) such that
A= diag(a1, . . . , an) with different numbers aj and by boundary conditions
that are called almost regular. Savchuk and Shkalikov [32] obtain a theorem
on the unconditional basis property for the eigenfunctions of a regular Dirac
operator with L1-potential; also they obtain new theorems on the asymptotics
of the eigenvalues of such operators with potentials from Lp.

Papers on the refinement of asymptotic formulas for the fundamental
matrices of solutions of the systems considered by Tamarkin and on asymptotic
formulas under less restrictive conditions than in [3] were published since the
50s of the last century. The history of these studies is described in sufficient
detail by Savchuk and Shkalikov [33]. In this work, asymptotic formulas for
matrices of fundamental solutions are obtained in the most general case, only
under the assumption that the coefficients in the system are summable. Also,
the remainder terms in the asymptotic expansions are investigated. In [34],
the definition of Tamarkin and Birkhoff–Langer regularity from [35] is modified
for systems; on the basis of results from [33] and methods from [19, 24], a
sketch of the proof for the theorem on the unconditional basis property of
the regular operators’ eigenfunctions is presented. The class of hyperbolic
systems is defined and the concept of regularity and semiregularity of operators
generated by such systems is introduced in [36]. For the regular operators
generated by the hyperbolic systems, a sketch of the proof for the theorem on
the unconditional basis property of eigenfunctions is given; also, it is proved
that the semiregular operators from this class generate strongly continuous
semigroups in the spaces (L2)n.

The recent works mentioned above show that Tamarkin’s ideas from [3]
remain relevant and are further developed even after a century.
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Andrey Shkalikov
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Boris Nikolaevich Delone (1890––1980)

Boris Nikolaevichich Delone1, a student of Dmitry Grave, was a professor
at Leningrad State University (1922––1935) and Moscow State University
(1935––1958), and a corresponding member of the USSR Academy of Sciences
(since 1929). He worked in algebra, number theory, computational geometry,
mathematical crystallography, and the history of mathematics.

Boris Delone obtained an explicit estimate of the number of integer solutions
to cubic Pell’s equations and later of arbitrary third degree Diophantine

equations with negative discriminant. Further
development of the geometrical approach to
solving equations in radicals led him to a geo-
metrical exposition of Galois theory and then to
the inverse Galois problem for solvable groups.
He developed a complete classification of four-
dimensional parallelohedra, investigated regular
partitions of n-dimensional space with an arbi-
trary Fedorov group, proved that there exist 24
types of three-dimensional lattices based on the
combinatorial structure of the Voronoy diagram
and the arrangement of symmetry elements with
respect to it. He was awarded the Fedorov Prize
of the USSR Academy of Sciences (1959) for his
work in crystallography.

Boris Delone was born in St. Petersburg into
the family of Nikolai Delone, a professor of
mechanics. Boris Delone’s great-grandfather,

Pierre Delaunay,2 was a paramedic in Napoleon’s army and was taken prisoner
during the War of 1812. After being let out he stayed in Russia, worked as a
doctor, was granted nobility, and married a Russian.

From an early age, Boris showed an interest in music and mathematics:
he played all of Beethoven’s sonatas and composed himself as well as knew
the basics of analysis at the age of 12 and began his studies in algebra and
number theory by himself. The family was often visited by Georgy Voronoy,

1 Spelling variant: Delaunay.
2 A nephew of Marquis de Launay, who was the governor of the Bastille for some time.
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whose works later influenced Delone. In 1904, Boris traveled with his father
to Heidelberg to attend the International Mathematical Congress and admired
talks of the great mathematicians David Hilbert and Hermann Minkowski.

In 1906, the family settled in Kiev. Under the influence of Nikolai
Zhukovsky, Boris’ father organized Russia’s first aeronautical club; among its
members was Igor Sikorsky, the future famous airplane and helicopter designer.
For two years Boris was building gliders, perfecting their design and flying
them; he once fell from a height of 15 meters, fortunately on recently plowed
land.

In 1908 Boris joined the Department of Physics and Mathematics at Kiev
University, the same year as Otto Schmidt.3 A year later, Nikolai Chebotarev4

also enrolled there. They became actively involved in the work of the seminar of
Professor Dmitry Grave. This seminar determined Delone’s research interest:
algebraic number theory.

Being interested in algebraic number theory, Delone wrote his essay The
interrelation between ideal theory and Galois theory (1912), for which he was
awarded the University Grand Gold Medal. Immediately after university he
began a series of research studies on the theory of indefinite (Diophantine)
equations, especially the cubic Pell equation.

After graduating from university (1913), Boris Delone taught there. From
1922 to 1935 he lived in Petrograd, taught at the university, became a professor
in 1923, and was the head of the department of algebra and number theory from
1930 to 1934. He was a member of the Leningrad Physical and Mathematical
Society. In 1928 he went to Germany and Italy to give lectures. In 1932 he
joined the Institute of Mathematics, and in 1934 he became a member of its
scientific council. From 1945 to 1960 he was the head of the department of
algebra, and in 1960 he was appointed the head of the department of geometry.
Since 1935 he was a lecturer at Moscow State University, where he was also
the head of the department of higher geometry (1935––1943). From 1944 he
was a member of the scientific council of the Institute of crystallography of the
USSR Academy of Sciences.

Delone’s research in the theory of cubic irrationalities also includes a
brilliant geometrical exposition of the Voronoy algorithm. Delone also worked
on the reduction theory of quadratic forms and the theory of sphere packings
in space/lattice coverings of space by spheres. He wrote several papers on the
history of algebra and geometry (on Euler, Gauss, Fedorov) and a book on
Chebyshev and Zolotarev titled Petersburg School of Number Theory (1947).
His results in the theory of Diophantine equations and the theory of cubic
irrationalities as well as his ideas, which were developed in the works of his

3 Otto Friedrich Julius Schmidt (1891––1956), a Soviet scientist (mathematician, as-
tronomer, geophysicist) and statesman, a member of the USSR Academy of Sciences.

4 Another student of Dmitry Grave, best known for the Chebotarev density theorem.
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Illustration from Boris Delone’s report “Sur la sphère vide” at the International
Congress of Mathematicians, 1924.

students, are exposed in his monograph Theory of Irrationalities of the Third
Degree (1940, together with Dmitry Faddeev).

Alexander Alexandrov, Igor Shafarevich, and Dmitry Faddeev considered
themselves his pupils.

Boris Delone was an excellent teacher and worked hard to convey the
geometrical essence of what was going on. In a lecture on affine transformations
in analytic geometry, Delone drew a cat and showed how its image changed.
Students from various courses attended this lecture each year.

In the spring of 1934 Boris organized the first mathematical Olympiad for
school children in Leningrad.
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The illustration that Delone used in his lecture on affine transformations.

Delone became one of the founders of Soviet mountaineering. His love for
the mountains was instilled in Boris by his father, with whom he trekked in the
Alps in 1903. He was the Master of Sports of the USSR in mountaineering; he
wrote the book The Peaks of the Western Caucasus (1938). He has developed
principles of classification of mountain ascents (five categories of complexity)
and then classified more than 200 routes to the summits of the Caucasus,
Central Asia, and the Altai. On the Katun Ridge of the Altai Mountains, the
Delone Peak on the Akkem wall of the Belukha Mountain and the ice Delone
Mountain Pass are named after him.

Even at a senior age, Delone did not give up his hobby. For example, in
1975, when he was 86, he made the following journey in one day: spent the
night at an altitude of 4200 meters at the foot of Khan Tengri in Kyrgyzstan
when it was −20◦C, flew by helicopter down to Frunze (now Bishkek) in the
morning, where the temperature was −40◦C, and got to Moscow by plane the
same day. Then, on the way to his dacha5 in Abramtsevo near Moscow, he lost
his way in the woods late at night. Nevertheless, by morning Boris reached
home safe and sound, with only his rucksack having had to be left behind.

Galina Sinkevich

5 A summer house.
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The Delone peak (on the right).
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Boris Delone and Diophantine equations
of degree three

In the early 1910s, Dmitry Alexandrovich Grave organized an algebraic
seminar at Kyev University. Grave was a representative of the famous St. Pe-
tersburg number theory school, and it is not surprising that the seminar was
attended by several exceptionally gifted students who later became outstanding
mathematicians. Among them were B. Delone, O. Schmidt, N. Chebotaryov,
A. Ostrowski. Here, we shall talk about the research of one of them — Boris
Nikolaevich Delone.

For his excellent thesis work, Boris Delone was awarded the University’s
Grand Gold Medal and continued his stay at the university “to prepare for
acquiring a professorship.” 1 At that time, the First World War began, and
Delone, without interrupting his scientific activities, worked in a military
hospital as an X-ray machine operator. In the summer of 1915, the front
approached Kyev, and the university was evacuated to Saratov. It resumed its
work only in the fall of 1916.

In these extraordinary circumstances, Boris Delone chose one fundamental
topic in number theory as the subject of his future research: indefinite
equations of the third degree. Progress in number theory has always been
determined by the achievements of outstanding mathematicians. In its ancient
period, the theory of indefinite equations was associated with the names
of Pythagoras and Diophantus. The solution of the simplest Diophantine
equations — of the first degree with two unknowns — appeared in the works of
the greatest Indian mathematician Aryabhata (6th century).

The solution of the simplest quadratic indefinite equation — Pell’s equa-
tion — was fully investigated in the works of other Indian mathematicians
Brahmagupta (7th century) and Bhāskara II (12th century). When asked
why the equation is named after Pell, there is the following answer. In his
work, Leonard Euler erroneously attributed the solution of this important
equation to the British (17th century) mathematician John Pell. The last
step in the theory of quadratic indefinite equations was made by the great
Lagrange. Cubic Diophantine equations remained practically unexplored for
about another hundred years, up to the works of A. Thue and Delone. Achel
Thue showed that a Diophantine equation f(x, y) = a, where f is an irreducible

1 This is similar to the modern postgraduate study.
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form in two variables of degree ≥ 3, can have only a finite number of solutions
over the field Q of rational numbers.

Knowing about Lagrange’s work on the theory of indefinite equations of
degree two, Delone started with an equation like

x3a+ y3 = 1, (1)

where a is an integer, but not the cube of an integer.
In the case a is the cube of an integer, the form x3a + y3 decomposes

into a product of linear and quadratic polynomials in two variables with
integer coefficients, and the solution of equation (1) reduces to the solution
of Diophantine equations of degree one and two, respectively.

Equation (1) is a cubic analog of the important Diophantine quadratic
equation x2a− y2 = 1, Pell’s equation and it always has a trivial solution (0, 1).
How to find all the solutions if they exist? To get the answer, Delone considered
the ring

Σ =
{
z

3
√
a2 +x 3

√
a+ y | x, y, z ∈ Z

}
.

This ring is obtained by the adjustment of the element 3
√
a to the ring of

integers Z. Let us consider the element ε= x 3
√
a+ y ∈ Σ and assume that

(x, y) is an integer solution of (1). Then, it is easy to write down the inverse
element ε−1:

ε−1 = x2 3
√
a2−xy 3

√
a+ y2.

Thus, any solution of (1) corresponds to some unit (invertible element) ε of
the ring Σ, and this unit is binomial in the sense that it contains no summand
like z 3

√
a2.

Thus, the question of the existence and finding of nontrivial solutions for (1)
reduces to the question of the existence and finding of binomial units in the
ring Σ. The celebrated Dirichlet theorem on units implies that any unit ε∈Σ
(regardless of whether it is binomial or trinomial) is a power of some so-called
fundamental unit ε0: ε= εm0 . Moreover, one can suppose that if 0<ε< 1, then
the degree of m is positive.

Using witty arguments, Delone showed that if the fundamental unit ε0

is binomial, then none of its positive powers εm0 , m 6= 1, is a binomial unit.
Then, he investigated units of the form ε= εm0 under the assumption that the
fundamental unit is trinomial: ε0 = z0

3
√
a2 + x0

3
√
a+ y0. At this stage, which

required even more ingenuity, Delone proved that if the fundamental unit ε0

is trinomial, then any unit ε ∈Σ (which, by Dirichlet’s theorem, is a power
of εm0 ) is also trinomial. Therefore, if a unit in the ring Σ is binomial then it
is the binomial fundamental unit.

Thus, Delone has obtained the final result for equation (1). In addition to
the solution (0, 1), the equation can have at most one integer root. To get it,
we need to find the fundamental unit ε0 in the ring Σ. If it is trinomial then
there are no non-trivial solutions. If ε0 is binomial: ε0 =x 3

√
a+ y then it gives

the only non-trivial solution (x, y).
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In 1897, Voronoy built an efficient algorithm for finding the fundamental
unit in the cubic case. At that time, this result made a strong impression on his
scientific adviser A.A. Markov. The Voronoy and Delone families were friends
and, certainly, Boris knew very well about this breakthrough. Moreover, it was
the work of Voronoy that prompted Boris Delone to research, due to which the
question of solving the cubic analog of Pell’s equation was completely closed.

Encouraged by success, Delone passed to a more general problem: to find
the roots of the equation

f(x, y) = 1, (2)

where f(x, y) = x3 + ax2y + bxy2 + cy3 is a cubic form in two variables with
negative discriminant. The negativity of the discriminant means that the
equation

t3 + at2 + bt+ c = 0 (3)

associated with the form f(x, y) has only one real root ρ.
It is natural to assume that ρ is irrational, otherwise the form f(x, y)

would be decomposable and finding the root of (2) would be reduced to solving
Diophantine equations of degrees one and two.

In this general case, Delone again considered the ring Σ =Z[ρ] of algebraic
numbers x+ yρ+ zρ2, and reduced the problem of finding solutions of equa-
tion (2) to the problem of finding binomial units of the form x+ yρ in the ring
Σ. As a result, he proved the following fundamental theorem.

For any cubic Diophantine equation (2) with negative discriminant, the number
of integer roots does not exceed five; only one specific equation has exactly five
solutions; two more equations have four solutions; all other equations of the
form (2) have no more than three solutions.

Delone considered several equations of the form (2) and could find all
solutions for each. To do it, he invented the so-called “boosting algorithm.”
Despite the ingenuity of this method and the possibility of applying it to any
equation (2), Delone did not give any upper bound for the number of steps
that guarantee finding all solutions.

The question of an effective upper bound for a very wide class of Diophan-
tine equations of degree above two was solved half a century later by English
mathematician Alan Baker (Fields Medal, 1970). Consider the Diophantine
equation f(x, y) =m, wherem> 0 is an integer, f(x, y) is an irreducible binary
form with integer coefficients of degree n≥ 3. Baker showed that there exists
a constant C depending only on m and the coefficients of the form f(x, y)
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such that for any solution (x0, y0) of the Diophantine equation f(x, y) =m the
inequality max(|x0|, |y0|)<C holds.2

It follows from Baker’s work that it is theoretically possible to find all
solutions of an ample class of Diophantine equations, including the cubic
equations studied by Delone. However, this circumstance does not detract
from the importance of Delone’s work, in which the nature of solutions of
indefinite cubic equations is revealed. The closest student of Boris Delone,
Dmitry Konstantinovich Faddeev, described this work in the following words:

In terms of the specificity of analysis, simplicity and clarity, the series of
works by B.N. Delone devoted to indefinite equations is exceptional in
mathematics of the 20th century with its often cumbersome apparatus
and abstract constructions. In its style, this cycle is close to the best
examples of the classical works of Gauss and Chebyshev.

Nikolai Dolbilin

2 More precisely, Alan Baker showed the following. Let f be a homogeneous polynomial
with integer coefficients f in x, y of degree n > 2, irreducible over Q, and m 6= 0 be an
integer. Then, any solution (x0, y0) of the Diophantine equation f(x, y) =m satisfies, for
any κ>n+ 1, the inequality

max(|x0|, |y0|) < Celog(m)κ ,

where C depends only on f and κ.



Abram Samoilovitch Besicovitch (1891––1970)

Besicovitch’s scientific legacy consists of more than 130 papers on the
theory of quasiperiodic functions, topology of the plane, measure theory,
Hausdorff measure, etc. His joint work with Harald Bohr resulted in the mono-
graph Almost Periodic Functions (authored by Besicovitch alone), which won
the Adams Prize in 1930, and the quasiperiodic
functions he introduced were called Besicovitch
functions.

Abram Besicovitch’s development of Haus-
dorff’s results in the dimensionality of sets had
a great resonance in modern mathematics. As
Benoit Mandelbrot put it, if Hausdorff can be
called the father of non-standard dimensionality,
then Besicovitch undoubtedly earned the title of
its mother. Besicovitch also solved the famous
“Kakeya needle problem” (what is a minimum
area of a region D in the plane, in which a needle
of unit length can be turned through 360◦) posed
by the Japanese mathematician Soichi Kakeya.
Besicovitch showed that this figure could have
an arbitrarily small area.

Abram Besicovitch was born in Berdyansk in the Taurian governance of the
Russian Empire to a large family of a Karaite goldsmith. After graduating from
Berdyansk Gymnasium (1908), he studied at the Mathematics Department of
St. Petersburg University.

There were a lot of advanced and enterprising pupils in the course of
1908––1912, e.g., Vladimir Smirnov, Nikolai Rose, Abram Besicovitch, Jacob
Tamarkin, Alexander Friedmann, Jacob (James) Shohat, and others. They
were active in the scientific circle of the Department of Pure Mathematics,
headed by Andrei Markov and Yakov (James) Uspensky, went to the “home
seminar” of the Austrian physicist Paul Ehrenfest, who was working in Russia
at that time. At this seminar young students learned about the latest
achievements in physics. Immediately after university, and possibly even
during his senior year, Abram Besicovitch took part in another mathematical
circle, organized by Alexander Friedmann, Jacob Tamarkin, and Alexander
Gavrilov. Members of that “scientific circle without a leader” worked according
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to their own program, studying not only classical works but also the then-new
areas of mathematical analysis, which were outside the interests of the older
generation of St. Petersburg mathematicians.

After graduation, on the petition of academicians Andrei Markov and
Vladimir Steklov, Besicovitch was retained at the university to prepare for

Young Abram Besicovitch.

professorship (1912). He passed his Mas-
ter’s examinations in 1915, but he was never
awarded a Master’s degree. The same year,
his first research articleNew Proof of the The-
orem on the Limit of the Probability in the
General Case of Independent Trials appeared
in the Proceedings of the Academy of Sci-
ences. In 1916, Abram Besicovitch converted
to Orthodoxy in order to get married. The
defense of his thesis (reviewers were Grigory
Fichtenholz and Jacob Tamarkin), scheduled
for December 31, 1917, did not take place,
most likely due to the revolutionary upheaval
in Russia.

In 1917, Abram Besicovitch, then a pri-
vatdozent of Petersburg University, together
with a group of young mathematicians, was
sent to Perm University, where he worked
as an extraordinary professor in the Depart-
ment of Mathematics of the Physics and
Mathematics Faculty. Young professors from
Petersburg brought the spirit of scientific
inquiry of their alma mater to the Permian

land: in 1918, they had already organized the Permian Society of Physics and
Mathematics and published The Journal of Physics and Mathematics Society
at the Perm State University, where they printed their papers.

During his time in Perm, Abram Besicovitch was much engaged in public
education in the Perm region, being a representative of the university on the
city committee of public education. In June 1919, he was appointed rector, and
in October of the same year, dean of the Physics and Mathematics Faculty;
he also organized a rabfac.1 He performed the rector’s duties for less than
half a year, albeit in the very complicated circumstances of the civil war.
When Kolchak’s army retreated, and the Red Army occupied the city, the
university was subjected to some ravaging. However, the young 29-year-old
rector skillfully and effectively organized the rescue of the university’s books
and other scientific valuables.

1 Literally workers’ faculty : an educational establishment set up to prepare peasants and
workers for higher education.



Abram Samoilovitch Besicovitch 269

“The only person who thought sensibly and saved what was left was B.,
apparently a disciple of Markov not only in the field of mathematics but also
in the field of decisive, exact, and definite actions,” wrote Alexander Friedmann
to Academician Steklov (Perm, August 1919).

He was a dean for only a year, as he was sent on a scientific trip abroad
in 1920 by the Perm University Council. He managed to reach Petrograd
only, where he was admitted to the position of a privatdozent at the university
and then of professor at the Pedagogical Institute. The consequences of the
civil war, devastation, and half-starved existence did not favor science. Yet
it was during this period that Abram Besicovitch fruitfully worked on the
problems of differentiability of continuous functions, supplementing the results
of Weierstrass and Denjoy, and the problem of a relationship between the
maximum and minimum of the absolute value of an entire function of order
less than 1, proving one of the important theorems of John Edensor Littlewood.

With the help of Paul Ehrenfest, who sent his works to Harald Bohr in
Denmark, Johannes van der Corput in the Netherlands, and J. E. Littlewood
in England, Besicovitch was awarded a Rockefeller Foundation scholarship for

Besicovitch’s portrait from Trin-
ity College gallery.

scientific work abroad in November 1924.
The Soviet authorities did not permit him to
leave the country, so he crossed the border
illegally (Finnish or Latvian, according to
different sources) and went to Copenhagen.
There, he carried out research in quasiperi-
odic functions under Bohr for about a year
and then moved to Oxford to G.H. Hardy,
who arranged for him to give lectures at the
University of Liverpool. From 1927, Abram
Besicovitch lived and worked in Cambridge,
holding the position of University Lecturer,
then became a member of Trinity College,
and from 1950, he chaired the Department
of Mathematics. He died in Cambridge on 2
November 1970.

For his distinguished works in almost pe-
riodic functions, measure theory, integration
theory, and many other fields of function
theory, Abram Besicovitch was elected a Fel-
low of the Royal Society2 in 1934, in 1950,
awarded the De Morgan Medal, the highest award of the London Mathematical
Society, and the Royal Society Sylvester Medal in 1952.

2 The Royal Society of London for Improving Natural Knowledge.
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Calling himself an expert in the “pathology of mathematics,” Besicovitch
ran a weekly column on “moot points” in the Cambridge University Gazette
for many years, to the delight and benefit of students, carefully reading and
annotating their solutions.

Besicovitch was a talented mathematician and an equally talented teacher,
charming and witty. Russian “Bessi,” as his students affectionately called him
(and the language of his lectures was called “Bessic English”) was forgiven
for his bad English, with wrong phrases and no articles, for just one joke:
“Gentlemen, 50 million Englishmen speak English like you, but 500 million
Russians speak English like me.” According to the recollections of his students,
many of whom became famous scientists, e.g., Hermann Bondi, Joseph Gillis,
Oliver Aberth, and others, there were legends about his lectures in Cambridge,
and paradoxical problems he gave to students were passed on by word of
mouth. For example: “In an enclosed circus there are a hungry lion and a
Christian, both have the same maximum speed. What tactics should the
Christian use to avoid being caught by the lion? And how should the lion
move to get his breakfast?” 3 Besicovitch was a master of complex constructions
that could reveal paradoxical truths. He did not strive for abstractions and
generalizations; he was a problem solver rather than a system builder, but his
contribution to mathematics is worthy of respect and deserves to be honored
in the scientific world.

Natalia Lokot
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Besicovitch projection theorem
and Besicovitch sets

Besicovitch founded geometric measure theory. But before I go to that
I shall discuss one of his earliest results from 1919. This is on Riemann
integration. It has had and continues to have a huge impact on modern
harmonic analysis and other topics. One might wonder how something on
Riemann integration a hundred years ago, when Lebesgue integration had
already surpassed Riemann integration, could have such an impact today. In
fact it does not, but the method Besicovitch introduced does.

The question was whether for any Riemann integrable function f in the
plane one could find a rotation ρ so that the function y 7→ f(ρ(x, y)) would
be Riemann integrable for all x. Besicovitch showed that one cannot always
do this. He constructed a compact set B in the plane of Lebesgue measure
zero that contains a line segment of unit length in every direction. Then the
characteristic function of the subset of B consisting of the points with at least
one rational coordinate serves as a counter-example. The sets like B nowadays
are called Besicovitch or Kakeya sets.

Besicovitch’s paper was published in the Perm journal and probably did
not draw much attention. In 1917 Kakeya asked the following question, which
Besicovitch obviously was unaware of: What is the smallest area of a plane
domain where one can continuously turn around a unit line segment? When
Besicovitch later heard about this question he republished his construction in
1928 in Mathematische Zeitschrift. His method tells us that one can do this in
a domain of an arbitrarily small area.

The construction is technically complicated but uses only elementary geom-
etry. Later on, it has been modified and simplified by many people. Perhaps
the most elegant way to do this is by Besicovitch himself from the 1960s. Before
going into this I explain how he founded geometric measure theory in the 1920s.
At the beginning of the last century, Lebesgue developed his measure theory.
One aspect of this was to introduce an outer measure that gives a non-negative
value to any subset of the Euclidean n-space Rn and when applied to nice sets,
it gives the volume, agreeing with any other reasonable definition.

In 1914 Carathéodory constructed for every integer k = 1, . . . , n− 1, an
outer measureHk which gives the k-dimensional area for smooth k-dimensional
surfaces and other k-dimensional objects which have the k-dimensional area
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defined in some other natural way. Today, this measure is called the Hausdorff
measure since in 1919, Hausdorff showed that the construction can be given
for non-integral values of k and applied to Cantor sets.

For k = 1 we have the length measure H1 and we can ask what is there
to say about the structure of sets with positive and finite length. Obvious
examples of such sets are rectifiable curves and their subsets of positive length.
But there also are many fractal examples. For example, let C1 be the standard
Cantor set in [0, 1] of Hausdorff dimension 1/2 obtained by first deleting from
[0, 1] the middle interval [1/4, 3/4], then deleting from the remaining intervals
of length 1/4 the middle intervals of length 1/8, and so on. Then C =C1×C1

has a positive and finite length and it meets every rectifiable curve in zero
length.

This is rather easy to show: any rectifiable curve has a tangent at almost
all of its points but C does not have any tangents at all. Hence they can only
intersect in a set of length zero. So what in general could one say about sets
with positive and finite length when such completely different examples exist?
Besicovitch showed that any set with finite length can be decomposed, uniquely
up to length zero, as a union of a regular set, whose properties are similar to
those of rectifiable curves, and of an irregular set, whose geometric properties
are completely opposite and resemble those of the above Cantor set C.

An approximation to the Besicovitch type set that contains needles in all the directions
between (1, 1) and (−1, 1).

Besicovitch proved that regular, and hence also irregular, sets can be
characterized by many geometric properties such as covering with countably
many rectifiable curves up to sets of measure zero, having almost everywhere
tangents, defined in a measure-theoretic way, and with analogs of Lebesgue
density theorem.

Another especially interesting characterization was in terms of orthogonal
projections. Besicovitch proved that a set with finite length is irregular if and
only if its projection on almost every line through the origin has length zero.
This is the Besicovitch projection theorem:
Theorem. Let E⊂R2 be H1 measurable with H1(E)<∞. Then H1(Γ∩E) = 0
for every rectifiable curve Γ if and only H1(Pe(E)) = 0 for almost all unit
vectors e∈S1, where Pe is the orthogonal projection onto the line {te : t∈R}.

The essential part is the ’only if’ part, the other direction is easy. So
one needs to show that irregular sets project to zero length in almost all
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directions. Besicovitch proved this in 1939 with an ingenious argument. Except
for technical modifications, it is still the only known proof.

Let us go back to Besicovitch sets. In 1964, 45 years after his first
construction and 25 years after the projection theorem, Besicovitch found a
beautiful connection between these two. Using the duality between points
and lines in the plane and his projection theorem he proved even more: there
exist Borel sets of measure zero which contain a full line in every direction.
He studied more generally regular and irregular line sets and their relations
to corresponding point sets using the polar correspondence between points
and lines. It is slightly simpler to explain the idea for the construction of
Besicovitch sets with the following parametrization of lines. For (a, b) ∈ R2

denote by l(a, b) the line y= ax+ b.
For A ⊂ R2 the union l(A) := ∪(a,b)∈Al(a, b) contains a line with every

slope a∈ [0, 1] if the projection π(A) on the first axis contains [0, 1]. Taking
the union of four rotated copies we get a set that contains a line in every
direction. Hence it suffices to find A such that π(A) contains an interval
and l(A) has zero area. Now l(A) = {(x, y) : y = ax+ b, (a, b) ∈A}, whence
l(A)∩ {x= t}= {t}× πt(A) where πt(a, b) = ta+ b. The map πt is essentially
a projection and the Besicovitch projection theorem tells us thatH1(πt(A)) = 0
for almost all t if A is irregular with H1(A)<∞. Then A would have zero area
by Fubini’s theorem. So all that is left to do is to find an irregular set with
finite length with one projection being an interval. For example, the Cantor
set C above serves for this.

The set C (square of the Cantor set) and its projection onto the line y=−2x.



274 Besicovitch projection theorem and Besicovitch sets

It is amazing how much Besicovich’s work described above has influenced
and continues to influence several areas of completely different character. Let
us first look at rectifiable, i.e. regular, sets. Federer generalized in the
1940s most of Besicovitch’s theory to higher dimensions and introduced the
terminology rectifiable and purely unrectifiable instead of regular and irregular,
commonly used today. In particular, he proved the projection theorem relying
heavily on Besicovitch’s planar proof.

Later, rectifiability and the Besicovitch–Federer projection theorem played
a fundamental role in the geometric calculus of variations. In 1960, Federer
and Fleming developed the geometric theory of currents, which provides a very
general and convenient setting for the Plateau problem: to find and describe
k-dimensional surfaces with minimal area and a given boundary surface. The
minimizing currents exist by easy weak compactness arguments, but they first
exist only as very general objects (distributions). A basic theorem of Federer
and Fleming was the compactness theorem for rectifiable currents giving a
rectifiable structure for the minimal currents. The proof of this was based on
the Besicovitch–Federer projection theorem.

The role of Besicovitch sets in modern harmonic analysis is even more
amazing. The methods related to them are usually called the Kakeya methods.
In 1971 Fefferman used them to solve the multiplier problem for the ball. For
a ball B in Rn, n≥ 2, define the Fourier multiplier operator TB by T̂Bf =χB f̂ .
By the Plancherel theorem, it is bounded in L2. Fefferman showed that it is
unbounded in Lp for all 1<p<∞ except p= 2.

Using again the duality method, Davies proved in 1971 that Besicovitch
sets in the plane have the maximal Hausdorff dimension two. It is conjectured
(called Kakeya conjecture) that the same is true in higher dimensions, that is,
Besicovitch sets in Rn should have Hausdorff dimension n. There are partial
results by many people but it is open for n≥ 3. This is interesting because
if it is false then many important conjectures in harmonic analysis are false.
For example, Stein’s restriction conjecture, which asks whether for smooth
functions f ,

‖f̂‖Lp(Sn−1) ≤ C‖f‖Lp(Rn) for 1 ≤ p < 2n/(n+ 1).

If the Kakeya conjecture turns out to be true, it does not prove any of these
conjectures. But there is good hope that it might lead to new progress because
Bourgain and many others since the 1990s have applied Kakeya methods to
prove restriction estimates.

The following list of references only contains some books where the above
topics are discussed and many more references can be found.

I would like to thank Dmitriy Stolyarov for inviting me to write this essay
and for his help with many comments and providing the pictures.

Pertti Mattila
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Ivan Matveevich Vinogradov (1891––1983)

I.M. Vinogradov contributed many new and important results and methods
to number theory. In 1934, for example, he devised a new method for
handling exponential sums (the so-called Vinogradov method), which allows
for significant improvements in estimates in many problems in analytic num-
ber theory. In 1937, he solved Goldbach’s weak conjecture (that any odd

number greater than 5 can be expressed as the
sum of three primes) for sufficiently large odd
numbers. He became an honorary member of
many foreign academies and was the first person
in the USSR to receive the Stalin Prize. He was
twice awarded the Order of the Hero of Socialist
Labor and received the Lomonosov Gold Medal
— the most prestigious award of the Academy
of Sciences of the Soviet Union. In the years
1932––1941 and 1944––1983, Vinogradov served
as director of the Steklov Institute.

I.M. Vinogradov was born in 1891 in the
churchyard of Milolyub, county of Velikie Luki,
into a priest’s family. After finishing Re-
alschule (secondary school) in his home county,
Vinogradov was admitted to the Department
of Mathematics at St. Petersburg University

in 1910. There, he wrote his master’s thesis on the distribution of quadratic
residues and nonresidues, under the supervision of J.V. Uspensky. From 1915,
Vinogradov remained at the university to prepare for an academic career.

In 1920 he became a professor at the university in Perm, and later returned
to St. Petersburg. Based on the course he taught, Vinogradov wrote Elements
of Number Theory, a book that has been published multiple times in many
languages. This book was a starting point for many famous Soviet mathe-
maticians. In 1927, Vinogradov found a new proof of Waring’s problem (that
any natural number is a sum of a fixed number of n-th powers) by extending
the Hardy–Littlewood circle method for finite sums. In 1929 he became a Full
Member of the Academy of Sciences of the Soviet Union.

He was director of the Institute for Demographic Research in Leningrad
(1930––1932) and of the Institute of Physics and Mathematics (1932––1934).
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After the latter split into two parts in 1934, Vinogradov became director of
the mathematics section (the Steklov Mathematical Institute). He moved to
Moscow, along with the institute, in 1934.

Managing the institute was Vinogradov’s main focus in life; he put a
lot of effort into it, remaining director until 1983. The only interruption
in his position was during WW2, in the years 1941––1944, during which he
was replaced by Sobolev. In concurrence with the unofficial policy of the
Communist Party, starting in the 1950s, Vinogradov refused to hire Jews and
anyone against the party line. Vinogradov had never been a member of the
Communist Party, however (even though such membership was almost required
for someone of his rank).

November 1931. I.M. Vinogradov, director of the Institute for Demographic Research
in Leningrad at that time. On the right: presumably N.I. Bukharin (executed in
1938). The faces of sentenced and persecuted persons would be scratched out in
photos in those years.

Vinogradov was a strong-willed director, but it was possible to sway him
from time to time. According to I.R. Shafarevich, Vinogradov would initially
refuse any request he received as director, even those he obviously supported.
Any accusations or complaints that were written by the institute’s staff would
not be sent anywhere; instead, Vinogradov stashed them in a briefcase, which
he asked to be burnt before he died. In 1955, he signed the famous “Letter
of the Three Hundred” in support of Soviet geneticists against T.D. Lysenko’s
team.

Vinogradov was very strong from his youth. In Realschule, he joined an
acrobatics club, where he did strength training. Remembering his childhood,
he later said: “My first stadium was the forest, first teachers — the village
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boys: tanned, agile, tough... I would spend all day in the forest or by the
pond, where I built my first raft and set sail when I was five...”

I.M. Vinogradov and N.N. Bogolyubov, August 1958. Edinburg, ICM.

A 90-year-old Vinogradov reminisced about a youthful joke of his — the
grand piano story. It took place in England, in 1946, at a reception organized
by the London Mathematical Society. Vinogradov (who barely spoke English)
was standing alone by the window in a huge room full of scientists discussing
mathematical problems. In the middle of it stood a large concert grand piano.
Vinogradov climbed under it, lifted it a little, and carried it off a certain
distance in the silenced room. Then, applause rang out. After that, some
mathematicians wanted to demonstrate their strength as well, but who could
compete with Vinogradov? To justify himself in front of his foreign colleagues,
Vinogradov pretended to be a “simple Simon” and said that he just wanted to
find out the brand of the piano.

Vinogradov approached everything with great passion — if he was to play
chess, then it was 100 games; if it was cards, then it was for a couple of days
straight; if he were to go on a hike, then it would be a long and tough one.

In an interview for a chess magazine, he said: “I remember when I was a
professor at the Leningrad Polytechnic Institute, I would sometimes offer my
students to play a game of chess on exam day. And, you know, the pre-exam
tension would diffuse during the match, and it would lighten the mood of both
the examiner and the examinee.”

Vinogradov’s museum in Velikie Luki exhibits a telegram addressed to
I.M. Vinogradov by J.V. Stalin. In 1941, Vinogradov donated all of his
money (85000 rubles) to the National Defense Fund to build tanks. This was
common practice, but very few got a personal telegram of gratitude from Stalin.
Vinogradov never married, and never had children; he led an austere life. Year-
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round, he left for his dacha in the village of Abramtsevo (near Sergiyev Posad)
on Thursday and stayed there until Monday. There he had a separate office
where, when he wasn’t doing physical work, Vinogradov would sit at the desk
and work with enviable productivity. He died on March 20, 1983.

A copy of Stalin’s telegram to Vinogradov from Vinogradov’s museum in Velikie Luki,
https://vk.com/museumimv?w=wall-174249572_210.

From Vinogradov’s opening speech at the International Conference on
Analytical Methods of Number Theory and Analysis, 1981:

To close, I would like to say a couple of words that could be helpful
to those who want to dedicate themselves to studying mathematics.
You have to try to solve important problems, without regard to their
difficulty. Their solutions will go down in the history of science and be
useful to many. That is what our predecessors did. You mustn’t get
carried away with simple and unnecessary problems just because they
require little effort. Scientists who do this can easily set their students
on the same wrong path. Having chosen a worthy topic, you should
create a work plan and never leave it, as long as there is the tiniest
hope of success. It is important to know the works of the classics —
their ideas can prove to be a deciding step toward your own success.

Nikita Kalinin
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Vinogradov’s work on exponential sums

I.M. Vinogradov set records for deep questions in analytic number theory
by pioneering methods involving exponential sums. These ideas continue to
stimulate research in number theory today. Let us look at four problems that
Vinogradov’s work on sums impacted.

Quadratic nonresidues. Given a prime p, an integer n, 1≤n<p, is a quadratic
residue if there is some integer x such that n≡ x2 (mod p). Otherwise, n is
a quadratic nonresidue. There are (p− 1)/2 quadratic residues and (p− 1)/2
quadratic nonresidues modulo p.

What is the smallest quadratic residue modulo p? It is always 1. What
is the smallest quadratic nonresidue, call it np, modulo p? This question has
connections to deep open questions in analytic number theory.

An elementary argument reveals that for each prime p, np must itself be
prime. How does np behave as p→∞? It is known that the sequence np is
unbounded when p grows. In fact, given any number N , there are infinitely
many primes p such that 1, 2, 3, . . . , N are all quadratic residues modulo
p. This can be proved using quadratic reciprocity, the Chinese Remainder
Theorem, and Dirichlet’s theorem on the infinitude of primes in arithmetic
progressions. Nevertheless, Vinogradov conjectured np cannot grow much: for
every ε > 0 there is a constant Cε such that np≤Cεpε for all primes p. This
remains open.

Fermat, Euler, Lagrange, Legendre, and Gauss all studied quadratic
residues. Legendre introduced a symbol (n/p) that takes the value +1 if n
is a quadratic residue modulo p, −1 if n is a quadratic nonresidue modulo p
(and 0 if p|n). This is an example of a Dirichlet character χq modulo q, and
thus Vinogradov’s conjecture fits into an important landscape of questions
about character sums. For any Dirichlet character χq it is interesting to study
for 1≤H ≤ q the sums

S(χq, H) =
∑

1≤n≤H
χq(n).

We can seethat np is the smallest integer H ≥ 1 such that S((n/p), H)<H.
In 1918, Vinogradov proved (concurrently with Pólya) that

|S(χq, H)| ≤ Cq1/2 log q
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for any non-principal Dirichlet character modulo q. The key idea was to
use a Fourier expansion modulo q, thus introducing exponential-type sums
to the problem. Moreover, Vinogradov developed a trick to upgrade the
consequence for np, showing that for any H such that S((n/p), H)<H, in
fact np≤H1/

√
e+ε for any ε> 0. Thus Vinogradov showed np≤ p1/(2

√
e)+ε.

In 1942, Linnik showed that Vinogradov’s conjecture holds if the Gen-
eralized Riemann Hypothesis is true. (And, assuming GRH, there is a
deterministic polynomial-time algorithm to find np.) Linnik also showed
unconditionally that for any ε > 0, the number of primes p with N ε < p≤N
with np > pε is bounded independently of N . Thus the primes for which
Vinogradov’s conjecture could fail must be density zero among all primes.
Today, the best known bound is np≤ p1/(4

√
e)+ε. This combines Vinogradov’s

trick with a bound for S((n/p), H) when H ≈ p1/4+ε, due to Burgess in 1957.
Vinogradov’s conjecture remains of great interest because of its connec-

tions to character sums, Dirichlet L-functions, and their associated Riemann
Hypotheses, and even (as Tao observed in 2015) to sieve theory, which is used
to detect bounded gaps between primes, for example.

Waring’s problem. In 1770, Waring asserted that for each k≥ 2, there exists an
s= s∗(k) such that every integer N ≥ 1 may be expressed as N =xk1 + · · ·+xks
with integers xi ≥ 0. Hilbert proved this assertion in 1909. (We know that
s∗(k)≥ 2k + b(3/2)kc − 2, but whether this is optimal in general is open.) A
different question is currently of central interest: given (sufficiently large) N ,
how many solutions xi≥ 1 to this equation are there?

The circle method, initially developed by Hardy, Ramanujan, and Little-
wood in the 1920’s, expresses the number rs,k(N) of solutions as the integral∑

1≤x1,...,xs≤N1/k

∫ 1

0
e2πiα(xk1+···+xks−N)dα

and then extracts a main term from the “major arcs” (intervals centered at
rational numbers a/q with q sufficiently small), and shows that the remaining
“minor arcs” contribute a smaller remainder term. As long as s is sufficiently
large relative to k, this method works well, and shows that rs,k(N) is asymp-
totic to cs,k(N)N s/k−1 as N→∞, where cs,k(N)> 0 for s≥max{5, k+ 2}.

What is the least number of variables s such that we can accurately
count rs,k(N) in this way? Initially, Hardy and Littlewood required s≈ k2k−1.
Conjec-
turally, it is thought that taking s ≈ k will be the limit of these
methods. The key is bounding exponential sums of the form
S(α,X)=

∑
1≤x≤X e(α1x+·· ·+αkxk). In the 1930s, Vinogradov started a

program for bounding S(α, X) via bounding the mean-value

Js,k(X) =

∫
(0,1]k

|S(α, X)|2sdα.
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Vinogradov outlined the Main Conjecture: Js,k(X)�Xε(Xs +X2s− 1
2
k(k+1))

for all integers s, k ≥ 1. Vinogradov made celebrated progress toward this
conjecture, and showed how to extract upper bounds for S(α, X) from Js,k(X).
In 1935 he set new records in Waring’s problem (showing s ≈ 10k2 log k
suffices).

The Main Conjecture in Vinogradov’s program for Js,k(X) remained open
for 80 years, despite much attention. Wooley (k= 3) and Bourgain, Demeter,
Guth (k≥ 4) finally polished it off with breakthrough papers published in 2016.
(Consequently, s≈ k2 suffices in Waring’s problem.) Moreover, their methods
(efficient congruencing and decoupling) have opened up exciting new questions
at the intersection of number theory and harmonic analysis.

Riemann zeta function. In 1859, Riemann initiated the study of the zeta
function ζ(s) =

∑
n≥1 n

−s for a complex variable s. His work established that
the key to counting the number π(x) of primes p≤x is to understand the zeroes
s=σ+ it of ζ(s) in the critical strip 0<σ< 1. In fact, for each 0<δ≤ 1/2, the
statement ζ(s) 6= 0 for all σ > 1− δ is equivalent to π(x) =Li(x) +O(x1−δ+ε)
for all ε> 0.

To prove a zero-free region for ζ(s), Vinogradov studied partial sums of the
form

∑
N<n<M n−it. By writing nit = eit logn and taking a truncated Taylor

expansion of the logarithm, once again the key is to study exponential sums

Waring’s assertions appear in (5) and (9) of Theor. XLVII in his Meditationes
Algebraicae.
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like S(α, X). The resulting Vinogradov–Korobov zero-free region, still the
best type known today, shows ζ(s) 6= 0 for σ≥ 1−C(log t)−2/3(log log t)−1/3,
for all t≥ 3.

Ternary Goldbach problem. In the 1740s, correspondence between Goldbach
and Euler initiated Goldbach’s problem (every even N > 2 is a sum of two
primes) and the ternary Goldbach problem (every odd N > 5 is a sum of three
primes). In 1923 Hardy and Littlewood proved the ternary Goldbach problem
for all sufficiently large N , assuming the Generalized Riemann Hypothesis. In
1937, Vinogradov proved this directly and unconditionally, and even counted
the number of such representations, via a sophisticated understanding of
exponential sums like S(α, X) with x restricted to prime numbers. In 2013,
Helfgott resolved the ternary Goldbach problem for all N > 5. Goldbach’s
problem remains tantalizingly open.

Lillian B. Pierce

In Riemann’s 1859 manuscript, we see a sum
∑α that corresponds to summing over

the zeroes of the zeta function ζ(s). (Cod. Ms. B. Riemann 3: folio 19r––20r in the
Göttingen collection).



Vladimir Alexandrovich Fock (1898––1974)

V.A. Fock was a theoretical physicist, a professor at Leningrad State Uni-
versity, and a member of the Academy of Sciences of the Soviet Union (1939).
He worked in quantum mechanics, quantum field theory, diffraction theory,
and gravitation. His most famous achievements were the discovery of the

dynamic O(4) symmetry of hydrogen atoms,
his approach to second quantization (Fock
space and the Klein–Gordon equation), approx-
imate calculations in multi-electron atom the-
ory (Hartree–Fock method), and the method of
parabolic calculation in diffraction theory. Fock
also invented the so-called Fock–Schwinger
gauge in Quantum Electrodynamics which was
widely used in Quantum Chromodynamics in
the 1980s––1990s.

Vladimir Alexandrovich Fock was born on
December 22 (10), 1898 in St. Petersburg. His
father, A.A. Fock, was an inspector in the
Foresters’ Corps (today, he would have been
called a forest ecologist). His great-grandfather,
Nikolai Antonovich Fock, moved from Holstein,

Germany, to Russia at the beginning of the 19th century to work as a hydraulic
engineer. Fock’s other great-grandfather, Nikolai Mikheevich Arkhangelsky,
was the founder of the Department of Physics and Mathematics at Kharkov
University.

In 1916, V.A. Fock attended Petrograd University1 but he decided to
volunteer for the front lines because he thought that his progressive hearing
loss would get in the way of his studies. After five months of courses at the
Constantin artillery school, he became an ensign2 and in September 1917 ended
up on the Romanian front, at which point utter chaos ruled. In February 1918,
his brigade was disbanded and everyone was advised to get back home on their

1 Petrograd University and Leningrad State University are one and the same. St. Peters-
burg was renamed Petrograd in 1914 at the start of World War I because ‘St. Petersburg’
sounded German. After Lenin’s death in 1924, the city was renamed Leningrad.

2 An ensign is a junior officer, usually the lowest commissioned rank in military services.
An ensign is ranked just below a lieutenant.
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own. In St. Petersburg, Vladimir Alexandrovich worked as an accountant for
some time under the supervision of Mikhail Chekhov, the writer’s brother
(since that time the book Textbook on Double-Entry Bookkeeping was kept in
Vladimir Alexandrovich’s home library).

Since his family had moved away, Fock lived alone in his apartment; his
address was 22, Line 9 on Vasilyevsky Island. He was forced to share his
apartment with some perpetually drunk sailors who beat him and stole his
belongings, so he sued them, and the sailors were evicted. Fock remembered
this incident throughout his whole life as the main argument supporting his
loyalty to the Soviet government that had “protected” him.

In early 1919, V.A. Fock followed D.S. Rozhdestvensky’s advice to work
at the newly-founded Optical Institute and returned to his university studies.
Rozhdestvensky even arranged some food rations for him, which, along with
the help of his close friends, saved Fock from starving. As a former officer, he
was subject to being conscripted into the army, but he managed to evade
it due to his advancing deafness. Classes at the university were so small
that they were almost individualized instruction, so his deafness caused much
fewer problems than before. Vladimir Alexandrovich would talk about his
teachers more often than others: D.S. Rozhdestvensky, of course, but also
Yu.A. Krutkov, V.R. Bursian, V.S. Frederik, and A.A. Friedmann. In 1922,
V.A. Fock graduated from university, but stayed there in “preparation for
a professor’s position,” equivalent to today’s postgraduate studies. One of
D.S. Rozhestvensky’s lectures sparked Vladimir Alexandrovich’s interest in
quantum mechanics, which became his main subject of thought for many
years. Parallel to that, he did some purely applied work as well, mainly on
calculations for electric cables. In 1927, he received a Rockefeller Foundation
grant upon the recommendation of P. Ehrenfest, which allowed him to work
for a year in Göttingen starting in August 1927. Crossing the border did not
pose any problems at that time; the only document needed for his future wife,
A.V. Lermonotova, to visit him was a note from her housekeeper. In Göttingen,
Fock worked primarily with M. Born.

During the next decade, Fock wrote his most outstanding papers on
quantum mechanics and field theory. Seeing his friends and colleagues dis-
appearing,3 Vladimir Alexandrovich immersed himself entirely in science. But
on February 5, 1937, he was arrested. His wife called A.N. Krylov, with whom
P.L. Kapitsa4 was staying, and said: “Vladimir Alexandrovich will not dine
with you tonight...” The meaning was clear, and P.L. Kapitsa wrote a letter to

3 This was the period of the Great Purge or the Great Terror (1936––1938), when Stalin
attempted to centralize and consolidate power by accusing a wide variety of Soviet citizens,
ranging from intelligentsia to peasants, of various political crimes like anti-Soviet agitation
or sabotage. These citizens were either executed or sent to gulags (i.e., forced labor camps).
Scholars estimate that around 700,000 people lost their lives as a result of the purges.

4 Pyotr Leonidovich Kapitsa (1894––1984) was a preeminent Soviet physicist, engineer,
and Nobel Prize laureate, known for his contributions to low-temperature physics. Among his
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Stalin that same day, which fortunately worked. Vladimir Alexandrovich was
transported to Moscow and released right there in Yezhov’s office.5 Vladimir
Alexandrovich was forever thankful to P.L. Kapitsa for saving him. He wrote
many letters to try and help his arrested colleagues and friends himself, but
unfortunately, they were unsuccessful.

Despite his involvement in the Academy of Sciences of the Soviet Union (as
a corresponding member since 1932 and a Full Member since 1939), his life
was very difficult. He did not even have enough money for food and firewood.
During the winter it was about 10◦ in his apartment. He bought the paper
in bulk, and later recollected how he had to write some of his main papers on
newspaper margins and wrapping paper. In the summer, however, his family
rented a house (dacha) in a village near Oranienbaum. In 1939, P.A.M. Dirac
visited that village despite it being forbidden to do so since the dacha was

achievements were the invention of new machines for the liquefaction of gases, and discovering
the superfluidity of liquid helium in 1937.

5 Nikolai Yezhov (1895––1940) was a Soviet secret police official who was the head of the
People’s Commissariat for Internal Affairs during the peak of the purges, from 1936 to 1938.
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officially located in the border zone. News of the imminent war got to Vladimir
Alexandrovich while he was on vacation in Kislovodsk, where he wrote letters
to his family saying that they should not move anywhere since the war would
soon be over. Still, he immediately returned to Leningrad. In September
1941, he and his family, under threat of arrest, were evacuated on an airplane
accompanied by five fighter jets first to Moscow, and then to Yelabuga. In
Yelabuga, he did work on radiolocation, for which he and his family were called
to Moscow in the summer of 1943 and given an apartment near the Kremlin
with food rations as compensation. His daughter, Natalya Vladimirovna, said
that she had never eaten better than in Moscow in 1943.

In 1944, V.A. Fock was offered a position as the head of the theoretical
physics department at Moscow State University. However, having found out
that his views contradicted those of the faculty’s management and that his
signature was forged on certain documents, Vladimir Alexandrovich retired
from the position after a few months. In addition to those reasons, Fock also
felt hostility towards D.I. Ivanenko, whom he blamed for the arrest and death
of M.P. Bronstein.

Since 1945, Vladimir Alexandrovich lived and worked in Moscow and
Leningrad. He even managed to get a double residence permit in his passport.
He spent the summer and weekends at his datcha in Komarovo.

Beginning in the 1930s, Vladimir Alexandrovich tried to participate in
philosophical discussions with radical Marxists, believing it was his duty to
protect science from their attacks. Later, some people who were unaware
of Fock’s contributions to theoretical physics thought of him as a Marxist
philosopher and invited him to appropriate conferences. Towards the end of
his life, he admitted that unfortunately his health didn’t allow him to do
anything more substantial than that.

Despite his loyalty to the state, Vladimir Alexandrovich tried to stay away
from official matters: he did not sign letters condemning colleagues and did
not participate in hearings. He had a famous phrase that he would say quite
loudly (he could not speak in quiet voice because of his deafness) in response
to a diatribe: “Cowardice does not affect the chances of imprisonment.” From
1954 onwards, he was allowed to travel abroad; many remember his phrase:
“I am not your serf!” which he said in response to the demand to hand over
the money he had earned abroad. However in 1969, his lack of opposition to
yet another conference on gravitation in Israel was not forgiven, and (due to
A.Z. Petrov’s tip-off to the authorities) he was banned from traveling abroad.

In his youth, Vladimir Alexandrovich went to church but, like most people
in his circle, he began to view any religiousness very negatively by adulthood.

Vladimir Alexandrovich died on December 27, 1974, in Leningrad and is
buried at the Komarovo cemetery.

Vladimir Fock



Nikolai Evgrafovich Kochin (1900––1944)

Nikolai Evgrafovich Kochin was an outstanding scientist in hydro- and
continuum mechanics and a Full Member of the Academy of Sciences of the
Soviet Union (USSR AS). He is famous for solving important problems in
meteorology, studying surfaces of discontinuity in a compressible liquid, and
solving the classic problem about the breakdown of discontinuities in an ideal
gas. N. Kochin also solved the problem about the circumfluence of a thin
wing, developed the theory of the irregular movement of bodies under the
surface of an ideal liquid, obtained a new solution for the Cauchy–Poisson

problem about waves on water, solved the plane
problem of underwater wings, and got formulas
for calculating the friction of a ship, taking into
account interactions between the ship hull and
the water. He was one of the authors of the
remarkable, two-volume textbook Theoretical
Hydromechanics.

Nikolai Evgrafovich Kochin was born on
May 6th, 1900, in St. Petersburg. His fa-
ther, Evgraf Samoylovich, was a clerk in a
small textile mill, and his mother, Yelizaveta
Nikolaevna (maiden name — Komarova) was a
peasant. When Kochin was eight years old, he
was admitted directly into the second year of
primary school. After graduation, he attended
the First Classical St. Petersburg Gymnasium.

Nikolai stood out due to his success in almost every subject. After graduating
from the gymnasium (during this time it was called the First Gymnasium of
Petrograd) in 1918, he enrolled in the mathematical section of the Physics and
Mathematics Department at Petrograd University. During that same year, he
was drafted into the Red Army. In October of 1919, Kochin fought in battles
near Yamburg and miraculously survived. In 1920, he was assigned to join
the Petrograd Technical Artillery School of the Red Army, where he served
in telephone communication services and simultaneously attended lectures at
Petrograd University. In 1922, he returned to his university studies full-time
and graduated in 1923.
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N. Kochin’s hydrodynamics teacher was A.A. Friedmann (author of the
famous cosmological solution to Einstein’s equation describing three scenarios
of the evolution of the Universe). In 1922, before graduating from university,
N.Ye. Kochin started working in the mathematical bureau of the Central Geo-
physical Observatory founded by A.A. Friedmann, and he was employed there
until he moved to Moscow in 1935. He held several positions, from computist
to professor, and director of the Institute of Theoretical Meteorology. At the
same time, N. Kochin taught at the Naval Academy, the Mining Institute, and
Leningrad State University. In 1933, he was already a full professor, and in
1936 he obtained a doctoral degree in physical and mathematical sciences.

A.A. Friedmann posed a problem whose solution made N. Kochin imme-
diately famous in meteorology. Kochin found the solution to hydrodynamic
equations of compressible fluids, taking into consideration the rotation of the
Earth, represented as a model of cylindrical vortices. This model signifi-
cantly generalized the most comprehensive model of the time proposed by
A.A. Friedmann. The results, including the trajectory of gas particles, closely
matched existing observations. During his time at the Central Geophysical
Observatory, N. Kochin posed and solved some of the most important problems
in meteorology, studied the surfaces of discontinuities in a compressible fluid,
and solved the classic problem of the breakdown of discontinuities in an
ideal gas. His main objects of study, however, were surfaces that separate
currents or masses of air with different parameters in the atmosphere. These
parameters define important atmospheric phenomena and display tangential
discontinuities, whose properties are significantly impacted by the Coriolis
force. He explored the problem concerning the linear stability of such currents,
which in and of itself is very difficult. N. Kochin’s work includes an analysis of
possible implications of the movement of fronts on the Earth’s surface, which
can be done using his research on the discontinuity surfaces.

N. Kochin also obtained fundamental results in the theory of general atmo-
spheric circulation. He was the first to notice the effect of the atmosphere’s air
friction, which used to be ignored. He estimated the thickness of a bordering
layer on the Earth’s surface, in which the Coriolis force plays an integral role.
N. Kochin was the first to build a model for a humid cyclone. These and
N. Kochin’s other works built the foundation for further studies in meteorology.

In 1925, Nikolai Evgrafovich married Pelageya Yakovlevna Polubarinova
(1899––1999), whom he had met earlier due to their mutual interest in science.
They had two daughters.

Parallel to his scientific research, N. Kochin worked at Leningrad University,
where he taught classes on mathematics and mechanics, including postgraduate
courses. In 1932, he also started working at the Institute of Physics and
Mathematics at the USSR Academy of Sciences. After it split into separate
physical and mathematical institutes, N. Kochin moved to Moscow in 1935 to
work as the head of the mechanics department at Steklov Institute. From 1935
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to 1938, he also worked at the Central Aerohydrodynamic Institute (CAHI),
which at the time focused on problems relating to aviation, a rapidly developing
field during this time, and the movement of ships, including submarines.
N. Kochin actively participated in researching new problems, which he solved
using the theory of ideal incompressible liquids; this theory includes the theory
of waves on water and the irregular motion of bodies under a liquid’s surface.
Kochin studied these problems with the help of his new method, using what
is now called “functions of general circulation.” N. Kochin also solved the
problem dealing with the circumference of a thin wing, got a new solution to the
Cauchy–Poisson problem for waves on water, studied the torsional vibration
of piston engine crankshafts, and investigated the possible forms of balloon
cables in the wind that changes with altitude.

Nikolai Kochin with Pelageya Kochina-Polubarinova.

After moving to Moscow, N. Kochin taught at Moscow University. First,
he taught postgraduate courses on wave theory, and from 1938 until the end of
his life, he was head of the hydromechanics department. From 1938 to 1940, he
was a scientific secretary at the Moscow Mathematical Society. In 1939, he was
elected a Full Member of the Academy of Sciences of the Soviet Union, skipping
the corresponding member stage. That same year, the Institute of Mechanics
at the USSR AS was created, where N. Kochin worked as a department head.
At the beginning of the Second World War, N. Kochin moved to Kazan along
with the Institute of Mechanics.

N. Kochin’s work during the years preceding the war was a great help in
solving military defense problems, especially his method of solving the plane
problem of an underwater wing and his formulas for calculating the friction of
a ship, taking into account interactions between the ship hull and the water.



Nikolai Evgrafovich Kochin 291

During World War II, Kochin developed and solved a set of problems on the
theory of circular wings, which allowed him to calculate the forces that acted
on an airplane’s wings during flight.

Apart from individual scientific works, N.Ye. Kochin wrote books that
included more general results that laid the foundations for a new era of
meteorology and hydromechanics. His numerous results in meteorology were
presented in the two-volume book Dynamic Meteorology (1935). He wrote
the textbook Vector Calculus and Fundamentals of Tensor Calculus, which
was reprinted many times, and, finally, the two-volume textbook Theoretical
Hydromechanics [1] with A.I. Kibel and N.V. Rose, that students studying
hydrodynamics in Russia continue to use even nowadays.

At the start of 1943, Nikolai Evgrafovich was diagnosed with bone cancer.
N. Kochin was hospitalized and his leg was amputated. After the operation,
he got better, and Nikolai Evgrafovich worked hard and vigorously once again
at the Institute of Mechanics and at Moscow University. In August of 1944,
the disease returned, however, and Nikolai Evgrafovich died on December 31st,
1944, at the age of 43.

N. Kochin’s major papers are included in his two-volume collected works [2].
The full list of the over 100 scientific works that Kochin published can be
found in his biography [3]. An analysis of the development of N. Kochin’s
ideas and methods, as well as very interesting stories of scientists who worked
with N. Kochin or knew him personally, are included in the materials of the
conference [4] that was held in honor of Kochin’s 80th birthday.

The enormous mass of work that N. Kochin completed during his very
short life is astonishing. His results, as well as his conceptual ideas, defined
hydro-aerodynamics and meteorology for many years and continue to do so
today.

Andrey Il’ichev and Andrey Kulikovskii
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Decay problem for an arbitrary discontinuity

The decay problem for an arbitrary discontinuity is the problem of con-
structing an analytic solution for nonstationary equations of the continuous
medium mechanics as applied to the decay of an arbitrary discontinuity. It
often arises in a wide range of problems in continuum mechanics, where
discontinuities are formed in a continuous flow, as well as in problems where
discontinuities initially occur in the distribution of the medium physical
parameters. This problem was solved by N.E. Kochin in 1924––1925 and has
been playing an important role not only in gas dynamics, but also in the entire
mechanics of continuous media.

The problem is posed as follows. For t= 0, in the space (x, y, z) the domain
for x< 0 is filled with a homogeneous gas with the following parameters: the
velocity v (vector with components vx, vy, vz), the pressure p, the density ρ,
and the specific internal energy e (depending on the density and pressure):
v0, p0, ρ0, e0. The domain x> 0 is filled with a homogeneous gas with other
parameters v1, p1, ρ1, e1. The relations between these parameters in principle
can be arbitrary. The problem is to find the gas motion for t > 0. The gas
is assumed to be inviscid and non-heat conducting, as well as perfect, that
is, it is an ordinary rarefied gas with internal energy e= 1

γ− 1
p
ρ

, γ = const.
If the initial data (the relations between the parameters v0, p0, ρ0, e0 and
v1, p1, ρ1, e1) are arbitrary, then in the course of time this discontinuity,
generally speaking, ceases to exist and must decay.

The motion generated by the decay of an arbitrary discontinuity is self-
similar, i.e., the dimensionless parameters v/a0, p/p0, ρ/ρ0, e/e0 are functions

of the variable x/(a0t), (a=

√
dp

dρ
is the speed of sound) and of the constant

parameters v0/a0, v1/a0, p1/p0, ρ1/ρ0, e1/e0. The x/t-dependent solutions are
well known. These are centered Riemann waves and shock waves [1]. To
these nontrivial solutions of the gas dynamics equations, propagating through
the gas, one should add tangential discontinuities, on which the following
continuity conditions for the pressure and the normal component of the gas
velocity should be satisfied:

[p] = 0, [vx] = 0. (1)

Square brackets above denote the change (jump) of the quantity enclosed in
brackets when passing through the discontinuity. A tangential decay does not
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impose restrictions on [vy] and [vz]. If [vy] = 0 and [vz] = 0, then the decay is
called contact.

In Riemann waves and shock waves, ρ, vx, and p are variables and the
changes in these quantities are interdependent, hence, one may consider the
changes in ρ and vx to be functions of the change in p. The components vy
and vz do not change in the waves under consideration, therefore, at the place
of the initial discontinuity in the gas, one still has a tangential discontinuity
with unchanged (coinciding with initial) discontinuities [vy] and [vz].

Thus, the solution to the problem of the decay of an arbitrary discontinuity
should consist of centered Riemann waves and shock waves, selected in such
a way that the tangential discontinuity remains at the site of the initial
discontinuity, where equalities (1) are satisfied.

Firstly, N.E. Kochin uses the fact that, for the Riemann waves, the values
of x/t corresponding to the wave are characteristics of the gas dynamics
equations. Secondly, he uses the fact that the characteristics behind the shock
wave follow the shock wave. This allows him to conclude that only one wave,
either a shock or a centered Riemann wave, can propagate in each direction
from the tangential discontinuity in the gas. Indeed, the first shock wave
propagates through the gas behind the wave at a speed lower than the speed
of sound, while the second shock wave moves through the gas in front of it
at a speed greater than the speed of sound; the Riemann wave propagates
at the speed of sound. This is not possible for a self-similar movement. If
a centered Riemann wave propagates through the gas, then its trailing front
moves through the gas at the speed of sound, and the shock wave following it
moves at a speed greater than the speed of sound (along the gas particles in
front of the wave). For self-similar movements, this situation is not possible.
If a Riemann wave propagates behind a Riemann wave, then the width of
the homogeneous zone separating these two waves remains constant, since the
speeds of the Riemann waves are equal to each other; this is also impossible
for a self-similar motion. The above arguments provide the following result.
Theorem ([2]). For the decay of an arbitrary discontinuity, only the following
three different wave configurations are possible:

1. tangential discontinuity takes place and a single shock wave propagates
in each direction from it;

2. on one side of the tangential discontinuity, a shock wave propagates; on
the other side, a centered Riemann wave propagates;

3. in both directions from the tangential discontinuity, one centered Rie-
mann wave propagates.

In all the cases, in the interval between the diverging waves, a domain is
formed, filled with a gas with constant pressure and velocity values, including
the tangential discontinuity surface. In the general case, the gas density is
discontinuous on this surface.
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To find the parameters of the diverging waves, one investigates the changes
of the quantities vx and p in the Riemann wave, where p is decreasing (after the
passage of the Riemann wave, the pressure p is smaller than before its passage)
and the changes of these quantities in the shock waves, where p is increasing.
On the plane vx, p, such relations imply that the values of vx and p after the
passage of a wave (Riemann or shock) belong to some curve passing through
the point corresponding to the initial values of vx and p. This argument applies
to each side of the initial arbitrary discontinuity under consideration. Since
the constructed curves intersect, conditions (1) are fulfilled at the tangential
discontinuity; also, we find the values of vx and p in its neighborhood and,
thus, we determine the type and intensity of waves propagating in each side.

For discontinuity decay with the formation of two Riemann waves, the sep-
aration of one gas mass from another is possible. This happens if the absolute
value of the difference between the normal initial velocities is sufficiently large.
Expanding gases cannot fill the domain formed via scattering and a vacuum
zone is formed between the leading fronts of the expanding gases.

The above arguments show that at a time different from the initial one, we
have a solution of one of the types indicated below.

Four possible cases of the decay for an arbitrary discontinuity. The dashed line
indicates the tangential discontinuity; а) an arbitrary discontinuity splits into two
shock waves propagating in both directions from the tangential discontinuity; б) split
into a centered Riemann wave propagating to the left and a shock wave propagating
to the right of the tangential discontinuity; в) splits into two centered Riemann waves
propagating in both directions from the tangential discontinuity; г) formation of an
intermediate vacuum zone in case в).

N.E. Kochin had given criteria for the formation of possible solutions
and had presented formulas describing them. The decay of an arbitrary
discontinuity into two shock waves occurs, for example, if the initial values
of the parameters differ only in the direction of the velocity, and the velocities
are directed towards the interface (the problem on symmetric collision of two
masses of gas). The decay into a shock wave and a Riemann wave occurs, for
example, if the gases on both sides of the discontinuity are initially at rest,
but have different pressures (the pressure equalization problem). The decay
of an arbitrary discontinuity into two Riemann waves occurs, for example, if,
with the same initial pressure and density, the initial velocities are directed
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outwards from the discontinuity surface (the problem of the expansion of two
gas masses).

To solve the decay problem for an arbitrary discontinuity it is not enough to
solve the problem with initial data; also, one should solve the collision problems
for shock waves under their oncoming and concurrent motion, as well as of the
collision problem for a shock wave with a tangential discontinuity.

Let us mention the further development of N.E. Kochin’s ideas contained
in his papers. First of all, these are papers related to one-dimensional motions
of media with more complex, in comparison with a perfect gas, equations for
the internal energy e in terms of p and ρ. In this case, in each direction
from the tangential discontinuity, a certain system of waves, a combination of
discontinuities and Riemann waves, can propagate. To solve such problems,
the concept of a generalized shock adiabat was introduced in [3].

It is known that, in certain cases, the solution to the problem of the decay
of the initial discontinuity may be non-unique. In this case, to guarantee the
uniqueness, one introduces additional criteria for the selection of “admissible”
shock waves. The requirement for the existence of a structure in the shock
wave is an example of such a criterion.

The problem of the decay of an arbitrary discontinuity was also stud-
ied in other models of a continuous medium, in particular, in magneto-
hydrodynamics and the nonlinear theory of elasticity. For example, in the
case of magneto-hydrodynamics, to satisfy the conditions on the contact dis-
continuity remaining from the initial discontinuity, it is necessary to dispose of
the amplitudes of three waves of different types propagating in each direction.
We can say that according to the generally accepted concepts in continuum
mechanics, each new model of a continuous medium with hyperbolic equations
must be checked for the solvability and uniqueness of a solution to the problem
of the decay of an arbitrary discontinuity.

It is also important to observe that many numerical methods (Godunov-
type methods) are based directly on the solutions of the problems on the decay
of an arbitrary discontinuity on each face of the partition of the domains where
the solution is constructed.

Thus, the formulation and solution by N.E. Kochin of the problem of the
decay of an arbitrary discontinuity in gas had a great influence on the further
development of continuum mechanics.

Andrey Il’ichev and Andrey Kulikovskii
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Post-war mathematics





Andrei Andreyevich Markov, Jr. (1903––1979)

Andrei Markov, Jr. is known for his results in theoretical physics, celestial
mechanics, dynamical systems, braid groups, topological algebra, logic, and
cryptography.

He proved that the equality problem in associative systems is undecidable.
Also, Markov proved that no algorithm could decide whether two four-
dimensional manifold presented as symplicial
complexes are homeomorphic. He proved the
theorem of a family of mappings having a
common fixed point (Markov–Kakutani fixed-
point theorem), as well as that the problem of
classifying four-dimensional manifolds is insol-
uble. He is the author of the Markov principle
(“Leningrad principle” in constructive mathe-
matics, a weakened version of the double nega-
tion) and introduced the notion of the normal
algorithm, also known as the Markov algorithm.

Together with Nikolai Shanin and Gregory
Tseytin, he created the school of constructive
mathematics and logic in the USSR. He was
head of the Geometry department at Leningrad
State University from 1936 to 1953 and the
director of LOMI1 from 1942 to 1953. In 1953,
he became a corresponding member of the Academy of Sciences. Since 1954 he
lived in Moscow and was the head of the Department of Mathematical Logic
at Moscow State University (1959––1979).

On 9 September 1903, in the family of the famous mathematician Andrei
Andreyevich Markov (1856––1922) and Maria Ivanovna Markova (née Valvat-
eva), after 20 years of marriage, their long-awaited son Andrei was born. His
parents would take the ailing boy to the fashionable German resort of Baden-
Baden in the summer and to Italy or the south of Switzerland in the autumn.

1 Leningrad (St. Petersburg) Department of Steklov Mathematical Institute of the
Russian Academy of Sciences.
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Like most of the boys who lived in the famous apartment building2 of the
Academy of Sciences, Andrei studied at the 8th St. Petersburg Gymnasium
for Boys (8, 9th Line of Vasilievskiy Ostrov). The boy’s psyche was bound to
be affected by his father’s protracted (from 1912) departure from Orthodoxy
and his style of communicating with those around him, unapologetic and not
tolerating contradiction.3 In 1919, Andrei Markov, after graduating from
the “common labor school” (as gymnasiums came to be called then), entered
the Physics and Mathematics Department of Petrograd University (Physics
Division). After graduating from the university in 1924, he became a research
fellow at the State Institute of Physics and Technology, and in 1925 he entered
the postgraduate school of the Astronomical Institute [1].

Markov’s first paper, published in 1927 in Zeitschrift für Physik, discussed
the minimality property of Schrödinger wave groups. For the remainder of
his postgraduate studies (up to 1928) Andrei Markov had been trying to find
a general solution to the famous three-body problem of celestial mechanics,
but he had found a solution only for a particular case [2]. The result was
an article [3] published in 1929 in the Journal of the Leningrad Physical and
Mathematical Society, which dealt with simple collisions in the general three-
body problem, and the subject of the work was a study of the motion of a
body not involved in collisions.

In 1930 Markov participated in the 1st All-Union Mathematical Congress in
Kharkov and gave two talks: “On almost-periodic mappings” and “Proof of the
theorem on calculability of a module of almost-periodic mappings.” Earlier, in
1927, while he was still a postgraduate student, Andrei Markov also attended
the All-Russian Congress of Mathematicians in Moscow, however, he did not
give any talks then.

In 1933, Andrei Markov began teaching at Leningrad State University,
which was named after A.S. Bubnov. In June 1934, the 2nd All-Union
Mathematical Congress was held in Leningrad. At this congress, Markov made
six contributions (more than anyone else): two in the “Topology” section,
“On isotopy of compact sets in Euclidean spaces” and “On some spaces of
finite dimension,” two in the “Analysis II” section, “Almost periodicity and
harmonizability” and a critical review of the mathematical content of the
1932 monograph of Nikolai Krylov and Nikolai Bogolyubov “Investigation of
longitudinal stability of an airplane” in “On the theory of stationary oscillatory
processes by academician N.M. Krylov and Dr. N.N. Bogolyubov,” and one
paper each in “Analysis I” and “Approximated Calculations” sections each,

2 Residential House for academicians of the Academy of Sciences and their families on
the Lieutenant Schmidt embankment (formerly Nikolaevskaya) No. 1/2. on the corner with
the 7th line of Vasilyevsky Island.

3 So S. Kovalevskaya in one of her letters to Mittag-Leffler complains: “Markov publicly
spoke about my work on rotation that it was full of gross errors! When he was asked to
show at least one, he brazenly replied that he did not want to do so.”
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“Arithmetical characterization of trigonometric polynomials” and “On devices
facilitating the construction of functional rectilinear scale”, [4].

The polemical reply by Nikolai Krylov and Nikolai Bogolyubov to Andrei
Markov’s criticism did not prevent Markov from being awarded the degree of
Doctor of Physical and Mathematical Sciences (without a defense procedure)
in 1935 and the title of Professor in 1936. That same year (1936) he also
became the head of the Geometry department at the Faculty of Mathematics
and Mechanics of Leningrad State University.

In 1936, the journal Recueil Mathématique (Математический сборник)
published an article by Andrei Markov, Über die freie Äquivalenz der
geschlossenen Zöpfe (“On the free equivalent of free braids”). The complete
solution [5] to the problem was given in 1939 by Noah Moiseevich Vainberg
(born 1914, killed at the front in 1942, [6]), a postgraduate student of Markov.
The latter referred to this subject once more in 1945 in his monograph
Foundations of Algebraic Braids Theory, [7].

Andrei Markov’s paper “On mean values and exterior densities,” published
in 1938, played an important role in the development of the theory of mea-
sure, [8]. It established the possibility of constructing a general topological
theory of measure and integration in normal spaces.

In the paper [9], “To the definition of the concept of the complex” (1939)
Markov proposed his definition of “a finite Euclidean symplectic complex which
makes it obvious that small displacements of vertices result in a Euclidean
symplectic complex.” In his papers [10, 11] on free topological groups Andrei
Markov pointed out a certain general way to construct topological groups.

Since 1948, Markov had become increasingly interested in the problems
of constructive mathematics and the general theory of algorithms (Markov
used the term “algorifm”). In this theory, he saw not only “powerful technical,
but also rich general logical possibilities.” As a result, he “developed the
notion of a normal algorifm, which turned out to be very convenient for a
lot of purposes,” as well as “significantly enhanced fundamentally important
S.C. Kleene’s theorem of representation of partially recursive functions through
primitive recursive ones” and obtained “very interesting results concerning the
complexity of normal algorifms that calculate Boolean functions”, [12].

As early as 1946 Andrei Markov proved the algorithmic undecidability of a
number of algebra problems [13]. In 1958, pursuing the topic of undecidability,
he published two important papers in the Proceedings of the USSR Academy
of Sciences, [14, 15]: “The Insolubility of the Homeomorphism Problem” and
“On the Insolubility of Some Problems in Topology.”

In 1947 in his review of topology in the book “Mathematics in the USSR
for thirty years 1917––1947” Markov devoted two pages to the results from the
unpublished manuscript “Cardinality in Topology” by his postgraduate pupil
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Mikhail Perelman4 who died in 1942. It should be mentioned that in 1953
Markov moved to Moscow and started working in the Computation Center of
the Academy of Sciences, where he created the Laboratory of Mathematical
Logic and Structure of Machines, which he headed for about 20 years. He also
worked at the Steklov Mathematical Institute at Moscow until 1972. From
1959 to the end of his life, Andrei Markov held the chair of Mathematical
Logic at the Faculty of Mechanics and Mathematics, Moscow State University.
Among his Moscow students we should mention Albert Dragalin (1941––1998),
Nikolai Nagornyi (1928––2007), and Boris Kushner (1941––2019), who, together
with his Leningrad students Nikolai Shanin (1919––2011) and Gregory Tseytin
(born 1936), continued Markov’s research in constructive mathematics.

Research Institute of Mathematics and
Mechanics of A.S. Bubnov Leningrad
State University, 1934.

Workers of the world, unite!
Letter of commendation

To be given to the Member of the
Research Institute of Mathematics and
Mechanics of A.S. Bubnov Leningrad
State University

A.A. Markov
For fruitful theoretical work, particularly
for his research of n-dimensional vector
spaces, and for his leadership of the
topological circle.
Director: A.R. Kulischer
Party Secretary: Lerman.
Labor organizer: N. [illegible]
[A translation of the illustration on the
left]

Comments about the letter of commendation

At the time the Institute bore the name of Andrei Bubnov, the People’s Commissar for
Education then. Three years later, he was arrested for ‘anti-Soviet terrorist activities’
and executed. In the same year, 1937, the institute’s first director, Alexander
Kulisher, also lost his job and was replaced by Vladimir Smirnov, whose name the
Institute bears today. The fate of the former is unclear: according to some reports,
he died in a wave of the Great Terror of 1937––38, while others suggest he got off
lightly — by the standards of the time — being expelled from the Communist Party
and exiled to Kirov, where he taught mathematics until at least 1944.

4 The son of Yakov Perelman, who was a Russian and Soviet science writer and author
of many popular science books.
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The letter of commendation itself is designed in the traditional ‘state of workers
and peasants’ style familiar to all generations of Soviet citizens, with the workers
against the backdrop of factories and smoking chimneys (an omnipresent symbol of the
‘workers’ part at the time) and the peasants onthebackground of combine harvesters,
sacks of grain, and sprouting crops. That last element, along with a hammer, was
also a part of the coat of arms of the USSR.

However, there is still a portrait of Lenin at the top: after the Second World War
and until the mid-1950s, such documents usually contained a portrait of Stalin alone.
Not for nothing did the official de-Stalinisation during the so-called Thaw5 take place
under the slogan of “a return to Leninist norms.”

In 1953 Andrei Markov was elected a correspond-
ing member of the Academy of Sciences of the USSR.
In the same year he became a member of the Com-
munist Party. Still, fifteen years later, in 1968, he
signed the famous “Letter of 99” against the forced
placement of the dissident mathematician Alexander
Yesenin-Volpin (1924––2016) in a psychiatric hospi-
tal. Andrei Andreyevich Markov died on 11 October
1979. In conclusion, I would like to quote two stanzas
from his humorous poem “The Demon,” 6 popular
among mathematicians in the 1960s [16]:

Sitting and eating spinach only

Was a spirit of denial, a spirit of doubt

And was as gloomy as an exhibit

Of the health care museum...

On these strange phenomena

Let bright light be shed:

The spirit of denial, the spirit of doubt

Was sick with the disease of “colitis.”

Vladimir Odyniec

5 The period between the mid-1950s and the mid-1960s when repression and censorship
in the Soviet Union were considerably relaxed and many political prisoners were released
and acquitted of charges against them.

6 It has the same name and characteristics as a well-known poem by Mikhail Lermontov,
a Russian poet, which is considered to be a masterpiece of European Romantic poetry and
is taught in Russian schools.
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From Markov moves to Markov traces

Andrei Andreyevich Markov Jr., not to be mistaken for his homonymous
father, is well known among topologists for an important though isolated result
in his mathematical production. This result, which is called Markov’s theorem,
concerns the classification of knots and links via braids and is expressed in
terms of so-called Markov moves. Although it dates back to the 1930s, it
found an unexpected echo fifty years later with the concept of a Markov trace.

Knots and links. In order to state Markov’s theorem, we start with a quick
introduction to knots and links. For a mathematician, a knot is a closed curve
in three-dimensional space without any self-intersection. Two knots are deemed
equivalent if one can deform continuously one into the other without allowing
self-intersections. Already in the 19th century it was known that there are
infinitely many knots up to equivalence. Deciding whether two given knots
are equivalent or not is a fundamental and difficult question. It is not even
an easier task to find out if a given knot is trivial, that is equivalent to an
“unknotted” knot such as a circle in a plane.

Mathematicians are also interested in links: a link is a union of finitely many
knots in space without any intersection. As in the case of knots, two links are
equivalent if one can deform continuously one into the other without cutting
through them. We may similarly ask whether two given links are equivalent
or not. The following figure presents the trefoil knot, the figure-eight knot and
the Hopf link (from left to right). The number of knots composing a link does
not change under deformation; therefore the Hopf link, which is composed of
two knots, cannot be equivalent to the other two knots, which themselves are
non-equivalent.

Obviously there are two directions in which one can follow a knot; choosing
an orientation of the knot amounts to choosing one of these directions. When
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we choose an orientation for each of the knots composing a link, we obtain an
oriented link. Two oriented links are equivalent if there is a deformation from
the first one to the second one preserving the orientations.

Braids. One way to produce an oriented link is to close a braid. To visualize
what a braid is, put n pegs on a horizontal line and attach a string to each
peg. Then let the strings dangle down, braid them ad libitum and attach each
bottom end to a lower peg, one of n lying on another horizontal line parallel
to the first one. We have thus formed what is called a braid. The strings of
a braid have a natural orientation which we choose to go from top to bottom.
Here is an example of a braid with four strings.

As in the case of knots and links, braids are considered up to deformation.
The nice feature about braids with a fixed number of strings is that, up to
deformation, they form a group: the product of two braids is obtained by
placing one on top of the other and gluing the corresponding ends accordingly.
This group (defined by E. Artin in the 1920s) has been extensively studied
since.

β1

β2

· · ·

· · ·

· · ·

β1β2 =

Given a braid β with n strings, connect the upper pegs to the lower ones by n
circular arcs as in the following figure. One then obtains a link, which we
denote by β̂ and call the closure of β. The link inherits the top-to-bottom
orientation of the braid.

In the early 1920’s the American mathematician James W. Alexander
(1888––1971) proved in [1] that any oriented link is equivalent to the closure
of some braid. Such a braid is not unique. Indeed, Markov identified three
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β
· · ·

· · ·

transformations on braids which, after closing, produce equivalent oriented
links. These transformations are called Markov moves. The first Markov
move uses the group structure mentioned above and replaces any braid β
by a conjugate braid, that is one of the form β′ = αβα−1, where α, hence
β′, have the same number of strings as β. The second and the third Markov
moves transform a braid β into a braid with an additional string: it consists of
adding an extra string to the right of β and braiding it once with the rightmost
out-coming string of β; there are two possibilities as shown in the following
picture.

β

· · ·

· · ·
β

· · ·

· · ·

Markov’s theorem. We say that two braids (possibly with an unequal number
of strings) are M-equivalent if they can be related by a finite sequence of Markov
moves and their reverses. It is not hard to convince oneself that M-equivalent
braids have equivalent closures as oriented links. Markov’s theorem states the
converse, namely two braids have equivalent closures if and only if these braids
are M-equivalent.

Markov’s theorem appeared in [4], an article in German with a summary
in Russian. The text was based on a lecture he gave on September 5, 1935 at
the First International Topological Conference, which was held in Moscow and
was historically the oldest truly international specialized meeting in topology.
Markov gave only a sketch of the proof of his theorem. The first detailed proof
appeared 38 years later in Joan Birman’s monograph [2].

Markov traces. Markov’s theorem resurfaced in the 1980s with the spectac-
ular discovery of a new link invariant by Vaughan Jones (1952––2020; Fields
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medal, 1990). A link invariant is a way to attach to each link a quantity (a
number, a polynomial...) which takes equal values for equivalent links. Link
invariants enable us to distinguish links that are not equivalent. Previously
very few link invariants were known. Triggered by Jones’s discovery, Nikolai
Yu. Reshetikhin and Vladimir G. Turaev from LOMI (the Leningrad Branch
of the Steklov Mathematical Institute) soon came up with infinitely many
new link invariants. Their construction is based on Drinfeld and Jimbo’s
theory of quantum groups (whose origin can in part be traced back to Ludwig
D. Faddeev’s school). Some of these constructions rely heavily on the following
consequence of Markov’s theorem: any function defined on braids (with any
number of strings) which is invariant under Markov moves gives rise to a link
invariant. Such a function is called a Markov trace; it very often occurs as the
trace map of a suitable family of matrix representations of the braid groups.
Numerous significant examples of Markov traces have been constructed in the
last decades.

The reader will find further details in the monograph [3] (from which some
of the pictures are borrowed).

Christian Kassel
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Dmitry Konstantinovich Faddeev (1907––1989)

Dmitry Faddeev was the founder of the Leningrad algebraic school. He
achieved fundamental results in Galois theory. In 1943, independently of his
Western colleagues, he defined and studied the cohomology of groups, a subject
that he arrived at while creating an apparatus for studying the field immersion
problem.

He was born in the town of Yukhnov, Smolensk governance (now Kaluzh-
skaya County) on the 30th of June, 1907, on his maternal grandfather’s estate.
Dmitry’s paternal grandfather came from peas-
ant stock in the Samara governance, and his
surname was created when he was emancipated
shortly before the abolition of serfdom.

From an early age, his main pursuits were
mathematics and music. In 1923, he entered
the Faculty of Physics and Mathematics at
Leningrad University, and in 1929 he joined the
composition class of Leningrad State Conser-
vatory. Later on, lack of time forced him to
leave the Conservatory but his love for music
remained, and he played the piano at a quite
professional level.

Ivan Vinogradov and Boris Delone, both out-
standing mathematicians, were Faddeev’s first
teachers. He wrote his graduate thesis under
the former and conducted his postgraduate studies under the latter. He later
said that after graduating from university, it was quite difficult to find a job
in his profession, and until 1930 he worked for various employers, including
the Weights and Measures Chamber, where he became addicted to smoking
because of lengthy interruptions to the observations of the instruments. Later,
however, he managed to give up the habit. A curious detail is that one
characteristic feature of this time period was a shortage of almost everything,
including paper, so he had to conduct his calculations, and they were quite
long, on the back of the wallpaper.

From 1930 onwards, Dmitry began teaching at various higher education
institutions in Leningrad. At Leningrad University, he taught from 1933 until
1989, the year of his death. In 1935 he defended his thesis, for which he
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was awarded a higher doctoral degree, bypassing the candidate’s1 degree. In
1937, he became a professor. He was Dean of the Faculty of Mathematics and
Mechanics from 1952 to 1954.

Faddeev worked at the Steklov Mathematical Institute of the Academy of
Sciences of the USSR, from its inception in 1932 until 1934 (when the Institute
moved to Moscow), and then worked at the Leningrad branch (LOMI) from
the year it was founded in 1940 until his death. In 1964, Faddeev was elected a
corresponding member of the Academy of Sciences. He chaired the Laboratory
of Algebraic Methods at LOMI for many years, was president of the Leningrad
Mathematical Society, and was the founder and continuous leader of the city-
wide algebraic seminar that is now named after him. Together with his wife,
Vera Nikolaevna, he was awarded the State Prize in 1981 for their monograph
Computational Methods of Linear Algebra. On October 20th, 1989, Dmitry
Faddeev died and was buried at the Komarovo cemetery.

From the left to the right: L.V. Kantorovitch, I.P.Natanson, D.K. Faddeev, 1938.

Faddeev contributed to many branches of mathematics: the theory of
functions, probability theory, geometrical crystallography, and especially to
numerical analysis. But at the heart of his work was algebra. He significantly
advanced Galois theory and the problem of immersion in Galois theory. His
work gave impetus to the development of the theory of representations of

1 A candidate’s degree at that time was equivalent to a Ph.D while a doctoral degree was
equivalent to a habilitation.
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non-semisimple objects (rings, modules) and integer representations of finite
groups.

While dealing with the problem of immersion, he encountered the formalism
of the so-called “factor systems,” which are omnipresent in that context, and
discovered that that formalism was a particular case of a much more general
construction. That was how the theory of group cohomology was discovered,
independently of and simultaneously with Samuel Eilenberg and Saunders Mac
Lane. According to the memoirs of his son, during their evacuation in Kazan in
1943, one evening, his father walked excitedly around the room and exclaimed
that he had discovered something remarkable (what he discovered was later
called cocycles). His son asked him how many people in the world would
understand what he had just done, to which the father replied, “Well, five,
maybe.”

He was a brilliant teacher and actively developed the concept of teaching.
His textbook Problems in Higher Algebra, written jointly with Iliya Sominsky,
has been reprinted extensively. His textbook Lectures on Algebra is still very
popular. He and his co-authors also wrote algebra textbooks for schools.

Faddeev’s basic approach to teaching and textbook writing was described
by him like this: “I believe that abstract concepts should be introduced as
we manage to arouse the need for generalization in pupils, or at least if it is
possible to illustrate general concepts with more concrete material.”

Dmitry Faddeev contributed to the origination of mathematical olympiads
for schoolchildren, the first of which occurred in Leningrad in 1934. He was
one of the founders of the remarkable boarding school No. 45. Today, it is the
D.K. Faddeev Academic Gymnasium at St. Petersburg State University.

His personal qualities deserve particular mention. He was kind and attentive
towards his interlocutors, was always as pleased with the success of his
colleagues as he was with his own, and was never arrogant. All of these
qualities helped facilitate the inviting and creative atmosphere that pervaded
the community of mathematicians in Leningrad.

As an extracurricular activity, each year Faddeev had a club for first-year
students who wanted to study algebra and number theory seriously, something
quite natural back then, however exotic it might seem to some these days. The
author of this article was one of the participants of the 1963 club.

Academician Igor Shafarevich wrote the following about Dmitry Faddeev’s
contribution to the world of mathematics:

Knowing how easily Dmitry Konstantinovich gives away his ideas, how
little he is inclined to emphasize his personal contribution, and how
much effort he is prepared to spend on discussing the work of his
students and colleagues, one could predict that his influence on the
development of mathematics would not be as clearly visible and as
widely recognized as it deserves. Words about Zhukovsky, to whom
D.K. Faddeev is also in other respects close in spirit, as described by
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Pushkin, are quite appropriate: ’They would translate him into all
languages if he himself did not translate so much,” the only difference
being that ’translate’ should be replaced with, say, ’quote.’ Dimitri
Konstantinovich’s contribution to mathematics seems to us to be
rather underestimated...
Dmitry Konstantinovich himself was not saddened by this state of
affairs in the slightest. And he was, of course, profoundly right. If the
principle “manuscripts do not burn” is true, then mathematical ideas
“do not burn.” And not just in the sense that future mathematicians
or historians of mathematics will reconstruct things again. Much more
important is the fact that for Dmitry Konstantinovich only the beauty
of mathematical ideas created by him was important, and this beauty
will always exist and will bear the imprint of his individuality.

In the 1930s, because of the isolation of Russian mathematics from the
West, much effort was spent on research in fields already long-established and
unknown only to us, instead of new research. And often, work in such fields
was in danger of a heartwarming discovery that turned out to be only the
rediscovery of a known result. But it was in exactly such a context that
Dmitry Konstantinovich’s remarkable traits came into play. He was a rare
mathematician in that he was happy to listen to his interlocutor, whatever the
latter wanted to tell him. In his reaction to a mathematical result, whether
it was his own discovery, the result that an interlocutor obtained, or an old
theorem previously unknown to the person he was speaking with, the beauty
of the result played the main role.

In 1963, Dmitry Konstantinovich offered me the chance to teach at the
newly-formed boarding school No. 45. Sometime later, he came to my class to
inspect my teaching. I was a very young man then and told the material with,
so to speak, far too much seriousness, meticulously proving all the facts, even
the obvious ones. After the lesson, Dmitry Konstantinovich publicly praised
me and then, when we were alone, said, “It seems to me that you have science
prevailing over reason.” I remembered this aphorism for the rest of my life,
and it greatly influenced my future teaching strategy.

Sergei Vostokov
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Diophantine equations, Galois theory,
homological algebra

Dmitry Konstantinovich Faddeev had a very wide range of scientific in-
terests. But certainly, first of all, we remember him as one of the most
outstanding algebraists of his time. His research touched almost all sections of
algebra. His first results are related to the theory of the Diophantine equations.
Faddeev’s interest in them was influenced by his teacher Boris Nikolaevich
Delone. Already the first attainments were impressive. Dmitry Faddeev was
able to broadly expand the class of the third- and fourth-degree equations that
could be completely solved.

It is well known that the solutions of binary equations of degree three make
a group with respect to natural multiplication. The classical Mordell–Weil
theorem claims that this group is finitely generated. However, it is not easy
to calculate its rank. In some cases, Faddeev managed to find such estimates
of the rank that enable one to get all solutions of the equation. For example,
the equations x3 + y3 =A were completely solved for all A≤ 50. To evaluate
the power of this result, let us just mention that before these studies it was
only possible to show that for some A the considered equation has only trivial
roots.

Let us also mention here one beautiful result concerning the equation
x4 +Ay4 =±1. Faddeev showed that for any integer A the equation has at
most one non-trivial root. This unique solution corresponds to the fundamental
unit of some purely imaginary algebraic number field of degree four. The root
exists only when the fundamental unit is trinomial.1 These and other results
are presented in the remarkable tract, “Irrationalities of the Third Degree”,
written by Dmitry Faddeev jointly with Boris Delone.

In subsequent years, Diophantine equations continued to attract the atten-
tion of Dmitry Faddeev. In one series of papers, he proved the finiteness of the
degree zero divisor class group for the Fermat curves of degrees four, five, and
seven. This yields very strong corollaries concerning the equations themselves.
For instance, it implies that there exists only a finite number of quadratic
fields in which the equation x4 + y4 = 1 has a non-trivial solution, and in each
of these fields the number of roots is finite. There were no results of this kind

1 For details and definitions, please, see the article “Boris Delone and Diophantine
equations of degree three” in this volume.
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in number theory before. Of course, from today’s point of view, when many
classical problems in the theory of Diophantine equations are solved, these
results are perceived differently, but at the time they were record-breaking.

The second direction, which interested Faddeev in the first years of his
scientific career, was Galois theory. He was especially interested in the so-
called inverse Galois problem (still not completely solved): to construct an
extension of a given field with the prescribed Galois group.

The first Faddeev’s results in this area relate to building extensions with
small Galois groups, such as the subgroups of the symmetric group on four
letters, metacyclic transitive permutation groups of prime degrees, groups of
quaternions and quaternion units.2

Wherein Faddeev uses a beautiful geometric approach. The desired field
is interpreted as a subset of a vector space on which the Galois group action
is simple enough. Then, many of the results mentioned here obtain elegant
geometric wording. For example, extensions of the rational number field, which
have the quaternion Galois group, turn out to be in close connection with
the triples of pairwise orthogonal rational vectors in the three-dimensional
Euclidean space.

However, the techniques developed by Faddeev for these problems are
insufficient for further development. His approach actively uses individual
characteristics of groups, and does not allow significant generalizations. The
next step here should have been: finding the solution for solvable groups. And
the natural approach to this is likely to be the following. To build chains of
extensions, each subsequent of which is an extension of the previous one with
an abelian Galois group.

This leads to a new problem. How to embed a given Galois extension
into a wider field with a given Galois group and with a given epimorphism
of this group onto the Galois group of the original extension? This problem,
more general than the Galois inverse problem, is called the Galois immersion
problem. One of the first Faddeev’s papers that started a systematical study
of the immersion problem was a remarkable article “Studies in the Geometry
of Galois Theory” (1944) written by him again in collaboration with Delone.
In the sections of this article, belonging to Dmitry, he formulates the necessary
solvability condition of the immersion problem, the so-called consistency
condition. This condition requires additive solvability of the problem. (The
solution is assumed to be a vector space endowed with a group of operators that
properly corresponds to the Galois group of the immersible field. The existence
of multiplication is not required at all.) He also proves that the consistency is
sufficient for immersibility, provided that the immersion problem kernel is the
cyclic group of order not divisible by 8. Besides this, in the same work Faddeev
proved that if the immersion problem with an abelian kernel has a solution in

2 Also known as the binary tetrahedral group.
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the category of Galois algebras, then there exists also a field solving it. The
meaning of these results for further development of research on the Galois
inverse problem and the immersion problem can hardly be overestimated.

The consistency condition turned out to be profound and, in a number
of cases, very close to a sufficient condition for immersibility. No wonder that
Helmut Hasse, an outstanding German algebraist who rediscovered it four years
later, tried to prove that the consistency condition is equivalent to immersibility
(at least in cases of abelian kernels). However, almost immediately after that
D.K. Faddeev and I.R. Shafarevich built examples that refute this conjecture of
Hasse. In particular, Faddeev could construct a really simple counterexample,
assuming that the kernel of the immmersion problem is a cyclic group of order
eight. Later, Dmitry, together with his graduate student R.A. Schmidt, could
also find an additional necessary and sufficient immersibility condition for such
a kernel.

Faddeev’s study on Galois theory had an influence on the further devel-
opment of this area. Together with his results concerning group cohomology,
they became the most essential component in the solution to the Galois inverse
problem for solvable groups and number fields (I.R. Shafarevich) and also for
the solution to the immersion problem for abelian kernels (A.V. Yakovlev).
Long-term research results of Faddeev and other mathematicians in this
direction are collected in his monograph The Immersion Problem in the Galois
Theory, written jointly with V.V. Ishkhanov and B.B. Lurie.

In 1947, in his article “On Factor-systems in Abelian Groups with Opera-
tors”, Faddeev defined the notion that we now call the cohomology of groups.
Simultaneously and independently, it was introduced by Samuel Eilenberg and
Saunders Mac Lane. Cohomology groups have become an extremely powerful
research tool in various fields of mathematics. It is believable, that Faddeev
came to this concept, trying to create an apparatus for the study of the field
immersion problem. Many of his subsequent results in homological algebra
are clearly inspired by natural constructions in the Galois theory. Indeed,
the cohomology turned out to be a perfect tool for studying the immersion
problem, constructing fields with solvable groups and solving other problems
related to the Galois theory and its applications.

The contribution of D.K. Faddeev to homological algebra is not limited to
the definition of cohomology groups. He had other important results on his
account. Let us mention the remarkable theorem relating cohomology of a
subgroup to cohomology of the whole group with coefficients in the coinduced
module.3

One should also mention his joint papers with Z.I. Borevich “Theory of ho-
mology in groups.” I, II, published in 1956 and 1959 (Bull. of Leningrad State

3 In the modern mathematical literature this result is usually addressed as Shapiro’s
lemma (1961). However, its first proof was published by Beno Eckmann in 1953. Faddeev’s
proof was, obviously, obtained independently.
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Univ.), which played an especially important role for local mathematicians.
These papers gave the first systematic review of the group cohomology theory
available to the Russian reader. Besides that, the authors not only provide an
overview of the theory state, but also present many new results. For example,
they give the first construction of minimal projective resolutions for modules
over local rings. By means of these resolutions, it was shown that any non-
cyclic p-group has infinitely many pairwise non-isomorphic indecomposable
p-adic representations.

To study other interesting problems, Faddeev also often used homological
methods, in the creation of which he actively participated before. So, he
constructed the theory of simple algebras over algebraic function fields and
calculated the Brauer group of the field of rational functions over a field of
characteristics 0. This result was far ahead of its time. Further development
of this study was the celebrated Merkurjev–Suslin theorem, which became one
of the brightest attainments of the Leningrad/St. Petersburg Algebraic school
created by Dmitry Konstantinovich.

Dmitry Konstantinovich Faddeev was a man of the highest intelligence.
In his youth, he studied at the conservatory, and was a great connoisseur of
classical music, an excellent pianist. For all of us who knew and loved him,
Dmitry Konstantinovich will remain the highest authority forever. We are
lucky that we could work and constantly communicate with this wonderful
man.

Anatoly Yakovlev

Addendum by the translator (Serge Yagunov). I would also like to say a
few words about the many years of pedagogical and organizational activity
of Dmitry Konstantinovich. He taught at the Faculty of Mathematics and
Mechanics since 1933, being the head of the Department of Algebra in 1944––49,
and the dean of the faculty in 1952––54. He was among those, who stood
at the origins of the Leningrad/St. Petersburg Mathematical Olympiads for
schoolchildren (held since 1934), and was one of the founders of a secondary
physics and mathematics school, now bearing his name.
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Solomon Grigoryevich Mikhlin (1908––1990)

S.G. Mikhlin was born in Kholmech, a Belorussian village, into a Jewish
family of modest means. His real name was Zalman Girshevich Mikhlin, and
he was the youngest of five children.

Mikhlin graduated from a secondary school in Gomel (Belarus) in 1923
and entered the Leningrad State Pedagogical Institute, named after Herzen,1
in 1925. In January 1927 he transferred as a second-year student to the
Department of Mathematics and Mechanics
(MatMekh) of Leningrad State University after
passing all his first-year examinations with-
out attending any lectures. Sergey Lvovich
Sobolev studied in the same class as Mikhlin.
Among their university professors were Nikolai
Maximovich Günther and Vladimir Ivanovich
Smirnov. The latter became Mikhlin’s master’s
thesis advisor: the topic of the thesis, defended
in 1929, was the convergence of double power
series.

In 1930 Mikhlin started his teaching career,
working for short periods at several institutes
in Leningrad. In 1932 he obtained a posi-
tion at the Seismological Institute of the USSR
Academy of Sciences, where he worked till 1941.
He was awarded the degree of “Doktor nauk”
(equivalent to a Doctor of Science) in Mathematics and Physics in 1935,
without having to earn the “Kandidat nauk” degree (equivalent to a Ph.D.),
and finally in 1937 he was promoted to the rank of professor. During World
War II he was a professor at Almaty State University. In 1944 Mikhlin returned
to Leningrad State University as a full professor. From 1964 to 1986 he headed
the Laboratory of Numerical Methods at the Research Institute of Mathematics
and Mechanics at Leningrad State University. From 1986 until his death in
1990 Mikhlin continued working as a senior researcher for this laboratory.

1 Alexander Herzen (1812––1870) was a writer and important thinker who is known as
the “father of Russian socialism.” He was one of the originators of agrarian populism. For
example, some of his writings inspired and contributed to the emancipation of serfs in 1861
throughout the Russian Empire.
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S.G. Mikhlin was the author of more than 220 scientific works, including
about 30 excellently written books and textbooks. On a large scale, S.G.
divided his research into “works”, each of which consisted of articles. As a
rule, each of these “works” resulted in the writing of a book. In each book,
he collected and regularized the results of his work, considering it his duty.
Mikhlin began his “work” impelled not so much by his own curiosity as by
lofty, objective ideas about the usefulness of the corresponding theory for the
development of mathematics and its applications. Of course, scientific curiosity
played its part too, but so to say, secondarily. The aspect of sportsmanship in
mathematics was exceedingly alien to Mikhlin’s creativity.

Mikhlin’s monographs and textbooks are remarkable from a pedagogical
point of view, especially those devoted to variational methods and different
classes of integral equations. Their style and accessibility to poorly prepared
readers made Mikhlin famous in the world of engineers, which was a rare
achievement for a mathematician. Almost all his books have been trans-
lated into many languages (in particular, into English, German, Chinese,
Japanese, and Hungarian) and have had a remarkable influence on many
young mathematicians, giving them a solid professional background. The
fields that Mikhlin specialized in were: the theory of elasticity and plasticity,
the theory of integral operators, numerical methods in mathematical physics,
and boundary value problems. As I. Gohberg stated [1]: “Mikhlin considered
the theory of singular integral equations his favorite creation. Very soon his
results led to pseudodifferential operators, and his notion of the symbol (1936)
became a cornerstone of this new theory that revolutionized partial differential
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equations.” According to G. Fichera [2], Mikhlin was one of the pioneers of
modern numerical analysis together with Boris Galerkin, Alexander Ostrowski,
John von Neumann, Walter Ritz, and Mauro Picone.

Mikhlin’s mathematical idol was the French mathematician Jacques Hada-
mard. They first met in Moscow in 1934 where S.G. was one of Hadamard’s
guides on a city tour.

This encounter was a memorable event for the young Mikhlin, who had
graduated from Leningrad State University with a master’s degree five years
earlier and whose first mathematical result was an extension of the Cauchy–
Hadamard formula for the radius of convergence to double power series. I
remember once in the 1960s, Mikhlin proudly told me that someone found a
resemblance between him and the famous French mathematician. Another of
Mikhlin’s mathematical heroes was his peer S.L. Sobolev. The latter always
called Mikhlin by his diminutive name Zyama.

Mikhlin had an innate sense of humor. He roared with laughter at the
compositions of the “Oberiuts” (The Society of Real Art, a Leningrad literary
group). In the Sixties, these compositions were accessible only through
“Samizdat,” a Russian abbreviation of the word for self-publishing, a practice
that was persecuted by the Soviet regime. He knew the poem “Plish and
Plum,” translated by D. Kharms from the German poem by Wilhelm Busch,
by heart. Mikhlin knew many other texts from memory, including Edward
Lear translated by S. Marshak, “The Owl and the Pussycat,” “In the Country
of the Jumblies,” “The Pobble who Has no Toes,” and others.
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S.G. never went to concerts, saying only that he perceived music as noise.
Self-critically, he said that he lacked capabilities for foreign languages, although
I happened to hear him speaking German and French.

A convinced atheist, S.G. Mikhlin knew the Pentateuch and, by the way,
reproached Thomas Mann for his exceedingly audacious handling of the Torah
in Joseph and His Brothers. Mikhlin liked neither the latter novel nor
M. Bulgakov’s The Master and Margarita. In general, it was difficult to
argue with S.G. on humanitarian themes because of his confidence in his
opinion, erudition, and strength of argumentation. His speech was logical
and aphoristic.

Mikhlin never prompted answers to poor achievers among the postgraduate
students and liked to repeat, after Ilf and Petrov: “The rescue of a drowning
man is the drowning man’s own job.”

S.G. Mikhlin knew that I had grown up without a father, who was killed in
the war in 1941, and, I would say, he looked after me in a fatherly way for many
years. He often invited me to his place, talked about his life and answered the
most diverse questions. It was from him that I heard, still being a student, that
Lenin was no less cruel a killer than Stalin, and that concentration camps were
first created under Lenin’s rule in Soviet Russia. S.G. Mikhlin was referring to
the Party and Administration University officials when he told me:

They just have power, but we have theorems. Therefore, we are
stronger!
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In 1961 Mikhlin received the State Order of the Badge of Honour. He was
awarded the Laurea honoris causa by the Karl-Marx-Stadt (now Chemnitz)
Polytechnic University in 1968. He was also elected for membership in two
academies, the German Academy of Sciences Leopoldina in 1970 and the
Accademia Nazionale dei Lincei in 1981. When he was not allowed to travel
to Italy to receive the title, the Italian mathematician G. Fichera and his wife
brought the small gold lynx, the badge of an Academician, to Leningrad. They
bequeathed it to Mikhlin in his apartment. My wife Tatyana and I were the
only guests at this “ceremony.”

Solomon Grigoryevich, for his numerous disciples and for his friends, is not
only an outstanding mathematician, but also a man of high moral standards
and a kind heart. He is a man of great intelligence, profound knowledge,
and versatility. His high qualities as a human being and as a scientist are
largely appreciated by the mathematical community all over the world and have
sparked love for mathematics and scientific research in many young hearts.

Vladimir Maz’ya
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S.G. Mikhlin and multi-dimensional
singular integrals

Solomon G. Mikhlin (1908––1990) (S.M.) influenced essentially the develop-
ment of Analysis and Mathematical Physics for almost half a century. In our
article, we aim to give an outline of just one important direction of his creative
heritage, namely, the theory of multi-dimensional singular integral operators.
This theory, in its turn, became the base for the calculus of pseudodifferential
operators, one of the major means in modern mathematical analysis.

The objects of study are integral operators of the form

u(x) 7→ a(x)u(x) + (Su)(x), (1)

(Su)(x) =

∫
Rd

K(x, y−x)u(y) dy, x ∈ Rd.

Here K(x, y − x) =
f(x, θ)

rd
, θ =

y−x
r

, r = |x − y|. The singularity of the
kernel is so strong here that the integral diverges if considered in the usual
sense. Therefore, it should be understood in the Cauchy principal value
sense. An obvious necessary condition for the latter convergence, even for
nice functions u, is ∫

|θ|=1
f(x, θ) dθ = 0. (2)

In a natural way, by localization, operators (1) can be defined on closed
smooth manifolds and also generalized to vector-function u(x), the kernel
K(x, y−x) being a square matrix-function.

Integrals in (1) are usually called ’singular’. In one dimension (d = 1)
equations with such integrals appeared at the beginning of XX century in
papers by D. Hilbert and H. Poincaré concerning certain boundary problems
in PDE and complex analysis. Even in one dimension, the Fredholm theory
fails for this kind of equations since operator (1) is not compact.

The one-dimensional case was treated mostly using tools and ideas of
complex analysis. The situation is different in the multi-dimensional case where
singular integrals appear naturally in the theory of elliptic boundary problems.
Here, before Mikhlin’s studies, very little was known (F. Tricomi, 1926, 1928,
d= 2, and G. Giraud, 1934––1936, d > 2, solved equations of a special form).
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The actual breakthrough was made by S.G. Mikhlin. In papers in Doklady
and Mat. Sbornik, [4, 5] published in 1936, he laid a foundation of the general
theory of singular integral equations. In the case d=2 he expanded the function
f in the trigonometric series f(x, θ) =

∑
n6=0 bn(x)einθ. Modifying this series,

he introduced a certain function, which he called the symbol of the operator
a(x) +S:

Φ(x, θ) = a(x) +
∑
n6=0

an(x)einθ, (3)

an(x) = 2πin

n
bn(x).

Being impressed by Mikhlin’s paper [4], Giraud [2] wrote: ’An ingenious
procedure indicated by S. Mikhlin makes it possible to treat equations with
double principal integrals of a very general type.’ Giraud generalized Mikhlin’s
construction and published a formula for the symbol of the singular integral
operator on a Euclidean space of arbitrary dimension, using spherical harmon-
ics. Giraud has never published a proof of his formula. A proof was published
by S.M. in 1955, twelve years after Giraud’s death, for the first time.

The operator is recovered uniquely from its symbol, up to a compact
additive term. There exists a correspondence between the sums and products
of operators and their symbols, again up to a compact additive term.

Main topics of the study by S.G. Mikhlin in this field were:
— Boundedness conditions for the operator S in function spaces;
— Solvability analysis for equations of the form

(Au)(x) ≡ a(x)u(x) + (Su)(x) = v(x), (4)

here a(x), v(x) are given matrix-, resp., vector-functions.
In lieu of explicit formulas for solutions of the equation (4) S.M. pro-

posed the procedure of regularization: finding a singular integral operator
R = b(x) + S̃ such that the operators AR− I and RA− I are compact in
proper spaces. As soon as such a regularizer is found, the singular integral
equation is reduced to an equation with a compact operator. The invertibility
of the symbol leads to the existence of a regularizer.

The notion of symbol enables one to treat many problems concerning sin-
gular integrals. For instance, it was established by S.M. that the boundedness
of the symbol, together with certain smoothness, guarantees the boundedness
of the operator in L2(Rd).

For 15 years S.M. was the only researcher who was working in the theory
of multi-dimensional singular integral operators. It was only in 1952 that the
fundamental paper by A.P. Calderón and A. Zygmund [1] appeared. They
extended M. Riesz’ theorem on the Lp-boundedness of the Hilbert transform

(Hu)(x) = (πi)−1

∫ ∞
−∞

u(y)

y−x dy.
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These authors showed that the multi-dimensional singular operator of convolu-

tion type u 7→ f(x/|x|)
|x|d ∗u is bounded in Lp(Rd), 1<p<∞, provided f satisfies

(2) and ∫
|θ|=1

log(2 + |f(θ)|)|f(θ)| dθ < ∞. (5)

Further on, Calderón and Zygmund succeeded in extending their results to
a wide class of singular integrals of nonconvolutional type. Namely, with a
kernel Q(x, y) satisfying |Q(x, y)| ≤C|x− y|−d and

|Q(x, y+h)−Q(x, y)|+ |Q(x+h, y)−Q(x, y)| ≤ Chα|x− y|−d−α,

α ∈ (0, 1), 2h ≤ |x− y|, (6)

one associates the operator TQ defined by the bilinear form

〈TQϕ, ψ〉 =

∫∫
ψ(x)Q(x, y)ϕ(y) dx dy, (7)

for functions ϕ, ψ ∈ C∞0 (Rd) with disjoint supports. If the operator TQ

extends to a bounded operator in L2, i.e., for all g, h ∈ C∞0 , the esti-
mate |〈TQg, h〉| ≤ C‖g‖L2‖h‖L2 holds, then the operator is bounded in all
Lp, 1<p<∞. Thus, the boundedness problem is reduced to the single case of
p= 2. Essential progress in the latter case was made by E. Stein, A. McIntosh,
M. Christ, and others. In particular, due to the impressive T1 theorem, the
operator with Calderón–Zygmund kernel Q is bounded in L2 iff both TQ and
its transposed T′Q map just one single function, that equals identically one,
into the space BMO (see, e.g., [3] for details and references).

The notion of index of an operator, the difference of dimensions of the null
spaces of the operator and its adjoint, introduced in F. Noether’s works of
1920-s for the one-dimensional case, was investigated by S.M. for the multi-
dimensional case. The symbol of a singular operator, as S.M. introduced it,
became central in this theory and had numerous applications. S.M. proved
that a scalar elliptic singular integral operator in the multi-dimensional case
has index zero. The matrix case turned out to be much more involved. In the
1960s, the general index problem was solved by M. Atiyah and I. Singer, with
far-reaching consequences for Analysis, Algebraic Topology, Noncommutative
Geometry, with further expansions into Theoretical Physics. With his ideas
and results in singular integral operators, S.M. became a forerunner of the
revolutionary progress in analysis in 60-s, the theory of pseudodifferential
operators, enveloping both singular integral, as well as differential operators
and their resolvents. R.T. Seeley, one of the pioneers in the field, acknowledges
the contribution by Mikhlin to the topic, see [8]: ’It will be clear that the author
is indebted to the work of Mikhlin, which introduces many of the concepts and
questions considered here.’
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The results by S.G. Mikhlin as well as the development of the theory are
presented in the books [6, 7].

Vladimir Maz’ya, Grigori Rozenblum
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Sergei Lvovich Sobolev (1908––1989)

Sergei Sobolev started his career in the theoretical department of the
Seismological Institute. He invented Sobolev spaces and proved embedding
theorems for these spaces. Sobolev was one of Igor Kurchatov’s deputies in the

atomic bomb project. Last but not least, he ini-
tiated the establishment of the Siberian Branch
of the Academy of Sciences in Novosibirsk.

Sobolev was born on 6 October 1908. His
father Lev and mother Natalia met when they
were exiled to Saratov for revolutionary activ-
ities. After this exile, his parents returned to
St. Petersburg, where his father worked as a
lawyer and his mother taught at a grammar
school. In 1919 Natalia and her children moved
to Kharkov to stay with her relatives because of
the lack of jobs in Petrograd1 and the impend-
ing famine. In Kharkov, adults’ earnings were
not enough to buy food, so the children worked
too, and Sergei read textbooks while herding
goats. In 1923 they returned to Petrograd.

It was not possible to enter university be-
fore the age of 17, and Sergei finished school
at 16. So, he enrolled in piano classes at the

1st Leningrad Art Studio, where he continued his studies even after he started
university in 1926. It was at this same studio that Sobolev met his future wife
in 1927. One day, in the presence of Leonid Kantorovich,2 Sobolev said:

Leonid Vitalyevich and I could have started university during the same
year, but I was not allowed to start because of my young age, so I had
to wait, and wasted the whole year playing piano and chess.

During his university studies, at Professor Günther’s lectures on mathemat-
ical physics, Sobolev had doubts about Saltykov’s theorem. Nikolai Günther
suggested that Sobolev read Saltykov’s original paper. When Sobolev compre-

1 The city of St. Petersburg was called Petrograd from 1914––1924, and Leningrad from
1924––1991.

2 Kantorovich entered university in 1926, being only 14 years old, with special permission
from the Ministry of Education, abbreviated in Russian as NarComPros.
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hended that paper and presented a counterexample, Günther was extremely
surprised and immediately singled him out among the other students.

In 1930, at the First All-Union Congress of Mathematicians in Kharkov,
Jacques Hadamard, speaking to Sobolev, who had presented a report on the
Cauchy problem for hyperbolic equations, said: “I will be very happy, young
colleague, if you will keep me informed about your future work, which is of
great interest to me.” In 1935, Sergei Sobolev introduced the notion of a
generalized function (i.e., distribution).

Sergey Sobolev and N.M. Günther.

Here is a fragment from his article:3

As we will see further, the studies by Prof. N.M. Günther on the
equations of potential theory and theory of heat turn out to be very
close to this circle of ideas. In them, Professor Günther shows that it
is often useful for these problems of mathematical physics to abandon
the differential equation in its classical form and move on to study
some integral equalities containing derivatives of orders lower than the
original differential equation. To solve the problem of diffraction on
logarithmic surfaces, which is the second part of our paper, we will
have to use some functions that are solutions to the wave equation in
some generalized sense. Not only is it possible that these solutions
have no first derivatives, but they could even be unbounded.

The young scientist attracted attention with his strong papers; in 1933, at
the age of twenty-five, he was elected as a corresponding member of the USSR

3 S.L. Sobolev, General Theory of Diffraction of Waves on Riemann Surfaces, in: Proc.
of the Steklov Mathematical Institute, 9, USSR Academy of Sciences Publishing House,
Moscow-Leningrad, 1935, P. 39––105.
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Academy of Sciences and as a full member six years later. Sergei Sobolev
was the youngest academician in the USSR for a long time. To list some
of Sobolev’s achievements in mathematical physics: he had developed the
theory of seismic wave propagation, had founded the theory of generalized
functions as functionals, had introduced the concept of generalized derivatives
as locally integrable functions, and had defined the generalized solutions of
differential equations. Also, dealing with the Dirichlet problem for a domain
whose boundary contains manifolds of different dimensions, he introduced
new function spaces in mathematics, now called Sobolev spaces, and proved
embedding theorems for them, known as Sobolev embedding theorems.

Sobolev was always interested in applications of science: as a student,
he did an internship at the Electrosila plant and calculated the transverse
vibrations of asymmetric shafts of electric generators. After graduation from

A confidential Kurchatov’s letter to Beria, asking to grant Sobolev access to all parts
of the Soviet atomic project.
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university, he worked on theoretical issues of seismology together with Vladimir
Smirnov and Solomon Mikhlin. In 1943, he started working at the Institute
of Atomic Energy, worked with Kikoin,4 and became Igor Kurchatov’s deputy.
During his fifteen years of work on the atomic project, Sobolev had to deal
with a computationally complex method of uranium enrichment by diffusion
of gaseous uranium hexafluoride through semi-permeable membranes. He
also coordinated calculations required for membrane design and the stable
operation of cascades for diffusion machines, and developed methods for the
verification of calculations, etc. During this time, Sobolev took an interest in
computational mathematics and cybernetics. Upon completion of the atomic
project, he moved to Moscow State University, where he became head of the
first chair of computational mathematics and computer center in the country.
For Sobolev, as it was for Leonid Kantorovich, estimation of the accuracy and
speed of computation was the subject of functional analysis and could be done
only after choosing a suitable function space.

S. Sobolev, the construction site of the Mathematical Institute in the Novosibirsk
Akademgorodok.

For Sobolev, the aesthetic side of science was also important:

If a mathematician cannot admire good results, and not only under-
stand what is accurate or inaccurate in them but see what is beautiful
and what is ugly, he will never do anything. Aesthetic criteria play a
huge role... I think it is one of the most important qualities of a person
who has decided to devote himself to mathematics — to be able to see
the beauty of a solution, a design, a construction ... One cannot do
anything in mathematics without a sense of beauty. I remember how

4 Isaak Konstantinovich Kikoin (1908––1984), physicist, from 1943, together with Kur-
chatov, was one of the main organizers and scientific directors of the Soviet atomic project.
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our eyes, the eyes of the young students of Leningrad University, were
opened to the gigantic world of motion, to the depth of connections
and causes of everything going on around, when for the first time
they showed us how to calculate the frequency of the oscillations
of a pendulum, knowing its length and the law of resistance of the
medium in which it swings. It was a revelation that left an indelible
impression for the rest of my life... I would not attempt to explain
where the internal laws of mathematics come from and how they work.
Aesthetic feeling plays a considerable role here. Any mathematician
knows what a ‘beautiful result’ or an ‘elegant proof’ is. Sometimes,
it is an unexpected thought that suddenly leads to a solution to a
problem that has been elusive for a long time. Sometimes, it is a bold
generalization, the ability to see in a specific situation the laws that
govern phenomena. And sometimes it is the orderliness and wisdom
of a complex concept, which, at the end of a long path of calculations
and reasoning, produces a bright result... I know for a fact that often
during reflection there is a desire to do what is prompted by some inner
feeling.

Sobolev was an emotional man. Once, when he was doing calculations on
the atomic bomb, someone knocked on his office door, but the lock would not
open. So, he opened the door with a kick of his foot. The doctor diagnosed
him with some kind of fracture and forbade him to leave the house for six
months — and it was during this time that Sobolev wrote his seminal book
Some Applications of Functional Analysis in Mathematical Physics.
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He said in an interview that

emotions are probably important, but mainly you need to be able to
get into the subject, you need to be hardworking and to have intuition.
Intuition only starts to work after you get used to the subject, and that
takes time. If you are interested and passionate about an issue, you
have to make it ‘your own’ in your head. Only then do fresh ideas begin
to emerge. The creative process is preceded by a lot of preparatory
work. Inspiration takes a lot of work. It doesn’t come by itself. It all
has to come together into some kind of system. You have to know the
subject extremely well for your intuition to work.

Sobolev was involved in the political life of the country. For example, on the
one hand he defended genetics (he was one of the signatories of the “Letter of
300”),5 cybernetics, and the application of mathematical methods in economics.
On the other hand, Sobolev was one of the active participants of the anti-Luzin
campaign6 in 1936, a series of accusations completely destroyed Luzin’s career
and life, with questionable corroborative evidence. In 1956, together with
Academicians Mikhail Lavrentyev and Sergey Khristianovich, he appealed to
the Central Committee of the Communist Party with a proposal to create the
Siberian Branch of the Academy of Sciences. The proposal was approved.

In 1958, Sobolev moved to Novosibirsk to work as director of the Institute
of Mathematics of the Siberian Branch of the Academy of Sciences. Sobolev
made sure that all the most important areas of modern mathematical science
were represented at the institute. Sobolev himself was never engaged in either
cybernetics or mathematical economics, but he did everything to support their
development at the Institute. Sobolev was a talented administrator, but
sometimes he trusted people too much. At the International Mathematical
Congress in Stockholm in 1962, trusting his subordinates, Sobolev made a
report on machine decoding of the Maya script (which was in fact made up
from beginning to end).7

5 The “Letter of the Three Hundred” was a letter sent to Soviet leadership on October
11, 1955, by a large group of Soviet scientists. It contained criticism of the scientific views
and practical activities of then head biologist Trofim Lysenko, and eventually led to the
resignation of Lysenko as well as that of some of his followers and protégés in the Academy
of Sciences.

6 Nikolai Luzin was a Russian and Soviet mathematician known for his work in descriptive
set theory and aspects of mathematical analysis with strong connections to point-set
topology. In 1936, Luzin was heavily criticized for a number of ideological “sins,” including
publishing his major results in foreign journals and being disloyal to Soviet authorities. The
latter accusation was supported by Sobolev. A special meeting of the Commission of the
Academy of Sciences of the USSR endorsed all charges of Luzin as an “enemy under the
mask of a Soviet citizen.” His department at the Steklov Institute was closed, and he lost
all his official positions, but he was neither arrested nor expelled from the Academy. This
decision was finally reversed in 2012. Aleksei Krylov and Sergei Bernstein defended Luzin,
while Pavel Alexandrov, Andrei Kolmogorov, Alexander Khinchin, and Sergei Sobolev were
against Luzin. Ivan Vinogradov remained neutral.

7 The principle of the Maya script was established by Yuri Knorozov in 1955. In 1960, the
staff of the computing center decided to automate the translation and a year later reported
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From Sobolev’s university diploma.

Sobolev’s wish for young scientists seems to be a fitting ending:

What is the most important thing a scientist should cultivate in
himself? One should get rid of excessive ambition. One should not
think that only a genius can be happy. One must learn to appreciate
even a small achievement, to rejoice in it, and never overestimate
oneself. One has to cultivate a love for work. One has to understand
and cultivate the joy of learning, which is almost the same as the joy
of life. Happiness is when your life’s work is needed.

Nikita Kalinin
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Sobolev embedding theorems

Sergei Lvovich Sobolev made a fundamental contribution to the develop-
ment of modern mathematics, to the formation of major scientific schools,
to the creation and development of new areas of applied mathematics. The
foundations laid by S.L. Sobolev for the application of functional analysis in
mathematical physics (the concept of a generalized derivative, a generalized
solution of a differential equation, embedding theorems, generalized functions)
have been developed in numerous studies in our country and abroad.

In the history of science, the name of Sergei Lvovich will forever be
associated with one of the most fundamental mathematical concepts of the
20th century — the theory of generalized functions, which opened up wide op-
portunities for research in the field of partial differential equations, theoretical
physics, and mechanics.

According to Sobolev, generalized functions are functionals on the space
of compactly supported functions (that is, functions equal to zero outside a
certain bounded domain) of a certain smoothness. For generalized functions,
the concepts of linear operations, differentiation, and multiplication by a
sufficiently smooth function were introduced. S.L. Sobolev applied the theory
of generalized functions to the study of solutions of hyperbolic and elliptic
partial differential equations.

On the basis of the theory of generalized functions, S.L. Sobolev introduced
the function spaces W (l)

p , now called Sobolev spaces, consisting of functions
whose generalized derivatives of order l are p-integrable.

Let f and g be locally integrable functions on a domain Ω in Rn. The

function g is called the generalized derivative Dαf =
∂|α|f

∂xα1
1 . . . ∂xαnn

of f ,

α= (α1, . . . , αn), |α|=∑αi, if the equality∫
Ω
f(x)Dαϕ(x)dx = (−1)|α|

∫
Ω
g(x)ϕ(x)dx

holds for any infinitely differentiable finite function ϕ on Ω. The set of all
functions f defined on Ω, for which all generalized derivatives Dαf of order l,
|α|= l, exist and are p-integrable, p≥ 1, is a Banach space W (l)

p (Ω) with the
norm

‖f‖
W

(l)
p (Ω)

= ‖f‖Lp(Ω) +
∑
|α|=l

‖Dαf‖Lp(Ω),
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where Lp = Lp(Ω) is the Lebesgue space of p-integrable functions with the
following norm: ‖f‖Lp(Ω) = {

∫
Ω |f(x)|pdx}1/p.

S.L. Sobolev studied connections of the spaces W (l)
p (Ω) with Lebesgue

spaces and with spaces of continuous functions, he characterized the trace
spaces for functions from these spaces on surfaces of different dimensions.
These results, now called the Sobolev embedding theorems, laid the foundation
and gave rise to the rapid development of a new research direction in the theory
of functions and in the theory of partial differential equations. Let us describe
the results of Sergei Lvovich on embedding theorems for function spaces.

The main results on the embedding of the spacesW (l)
p (Ω) refer to domains Ω

satisfying the cone condition. This means that each point of Ω can serve as a
vertex of a cone of constant height and opening located in Ω. In what follows,
we assume that the domain Ω⊂Rn satisfies the cone condition.

Areas with a smooth border, as shown on the left, satisfy the cone condition. In
regions with external peaks, like the region on the right, the relations between the
parameters in the embedding theorems turn out to be different.

Let Ωm, 1 ≤ m ≤ n, denote the section of Ω by a plane of dimension
m, Ωn = Ω, and 1 < p < q <∞. Let us present Sobolev theorems on em-
beddings into the space Lq(Ωm) of q-integrable functions on Ωm and into
the space C(Ω) of continuous and bounded functions on Ω with the norms
‖f‖Lq(Ωm), ‖f‖C(Ω) = supΩ |f |, respectively.

Let 1<p≤ q <∞. Then

W (l)
p (Ω) ⊂ Lq(Ωm) for l−n/p+m/q ≥ 0, (1)

W (l)
p (Ω) ⊂ C(Ω) for l−n/p > 0. (2)
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An excerpt from Sobolev’s work in the journal Matematicheskĭı Sbornik (1938) where
he defines the generalized derivative.

It is necessary to clarify that in the theory of Sobolev spaces (as in the
theory of Lebesgue spaces), equivalent functions, that is, functions differing on
a set of measure zero, are identified. So the embedding (2) means that every
function in W (l)

p (Ω) is equivalent to a continuous one. The embedding (1) for
m<n shows that the Ωm-traces of functions from W

(l)
p (Ω) belong to Lq(Ωm).

Moreover, for a continuous function f , the Ωm-trace of f is defined as the
restriction of f to Ω; for an arbitrary function f ∈W (l)

p (Ω), the trace is defined
as the limit of traces in Lq(Ωm) for a sequence of functions continuous on Ω

and approximating f in W (l)(Ω).
The embeddings (1) and (2) mean not only the fact that each function

from W
(l)
p (Ω) belongs to the spaces Lq(Ωm) and C(Ω), respectively, but also

the following inequalities:

‖f‖Lq(Ωm) ≤ C‖f‖
W

(l)
p (Ω)

,

‖f‖C(Ω) ≤ C‖f‖
W

(l)
p (Ω)

for all f ∈W (l)
p (Ω); the constant C in the above inequalities does not depend

on f .
S.L. Sobolev established the embedding (1) for m = n and the embed-

ding (2). In the case where m< n, the embedding (1) was established for



336 Sobolev embedding theorems

p= q= 2. For other values of p and q in this case, the proofs are due to V.I.
Kondrashov and V.P. Il’in.

To prove the embeddings (1) and (2), Sergei Lvovich proposed a new
research method — the method of integral representations for functions of
several variables in terms of derivatives. Such a representation has the following
form:

f(x) =
∑
|α|≤l−1

xα
∫

Ω
ζα(y)f(y) dy+

∫
Ω

1
|x− y|n

∑
|α|=l

ωα(y, x)Dαf(y) dy,

where xα = (xα1
1 . . . xαnn ). The principal part of the above representation is the

potential type integrals for derivatives of the function under consideration.
With the help of such representations, the problem of proving embedding
theorems is reduced to appropriate estimates for integrals of potential type.

After the fundamental work of Sergei Lvovich, the theory of embedding of
function spaces has been actively developed in many different directions. One
had weakened the conditions on the domain under which the embeddings (1)
and (2) hold. One had obtained the embedding theorems depending on the
form of the domain Ω, one had studied Sobolev type spaces, the norms of
which did not include all derivatives of order l, and one had investigated
anisotropic Sobolev spaces, in which the norms were composed of the norms
of derivatives of different orders in different variables. Special attention was
given to the study of the exact characteristics of the traces of functions from
the space W

(l)
p (Ω) on the boundary of Ω. Such characteristics were given in

terms of other function spaces of positive smoothness, which stimulated the
development of the theory of these spaces. It is difficult to present all the
directions of development of the theory of embeddings of function spaces.

The theory of Sobolev embedding theorems and applications of this theory
to the solution of differential equations are presented in his book “Applications
of functional analysis in mathematical physics” (1950) published by Leningrad
State University. The third edition of this book (1988) contains useful additions
and remarks, as well as a far from complete list of papers reflecting the
development of the theory of generalized functions and function spaces by
S.L. Sobolev and many applications of this theory.

Oleg Besov



George G. Lorentz (1910––2006)

Russian-American mathematician George G. Lorentz was born at 12 Pe-
sochny Street,1 St. Petersburg. His father, Rudolf Fedorovich Lorentz, was a
German railway engineer on the private Moscow-Vindava-Rybinsk Railroad.
Rudolf Fedorovich was fired from state railways for sympathizing with workers
during a strike in 1906. George Lorentz’s mother, Milena Nikolaevna, was
the daughter of Prince N.V. Chegodaev, who was a Lieutenant Colonel and
a teacher of the Nikolai Cadet Corps. In this family, the men were military
personnel and/or engineers. Her sister, Yeliza-
veta, was a physician in St. Petersburg in the
1930s. In 1912, R.F. Lorentz relocated to work
for railway companies in the Caucasus. The
family lived in Armavir (1913––1918), then in
a village near Sochi (1919––1922), then in Tbil-
isi. Lorentz studied at a Russian school (1923)
and later at a German one. In 1926, George
Lorentz was accepted to the polytechnical de-
partment of Tbilisi State University.2 His suc-
cesses in mathematics were so remarkable that
his professors, N.I. Muskhelishvili and A.M.
Razmadze, advised him to apply to Leningrad
State University.

In 1927, Lorentz was accepted as a first-
year student at Leningrad State University. He
called himself a student of G.M. Fichtenholz,
N.S. Koshlyakov, and A.M. Zhuravsky. Lorentz graduated in 1931, and
defended his Candidate’s thesis on Bernstein polynomials in 1935. From 1936
to 1942, he taught mathematical analysis at the university. He also taught
at the Herzen State Pedagogical Institute for some time. He published several
papers: On Methods of Linear Summation (1932), Functionals and Operations
on Spaces of Sequences (1935), On the Convergence of Stieltjes–Landau
Polynomials (1936), About the Theory of Bernstein Polynomials (1937) —
the last two of which were topics of his thesis. He edited Ya.S. Besicovitch’s

1 The street is now Professora Popova Street.
2 Since 1928 — Georgian State Polytechnic Institute, since 1990 — Georgian Technical

University.
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book on approximations in calculus. At the time, Lorentz lived at Demidov
Lane,3 house No.3 [1].

In 1937, Lorentz’s father, who by then was a professor of railway engineering
at the Tbilisi Polytechnic Institute, was arrested and wrongfully accused of
espionage. He was sentenced to eight years in a labor camp, where he died
after one year. This deeply disturbed G. Lorentz. He wrote that despite having
support from G.M. Fichtenholz, he never finished his half-written textbook
on functional analysis, and barely did any scientific work until 1942. In
January of 1942, under Case No. 555 “Union of the Old Intelligentsia”, many
mathematicians were arrested, including B.I. Izvekov, whose family was close
to Lorentz’s. The NKVD (People’s Commissariat for Internal Affairs) started
summoning Lorentz, as well, and danger loomed over him.

When WWII reached the Eastern Front, Lorentz was mobilized as a private
in an air defense unit. In April of 1942 he and his wife, Tatyana Pavlovna
Belikov (Tanny Belikov), were evacuated to Kislovodsk along with the staff of
the Pedagogical Institute. Soon, the Germans occupied the city, and Lorentz
was registered as an ethnic German. At the beginning of January 1943, the
German troops left Kislovodsk, and Lorentz and his wife were moved to a
displaced persons camp in Poland, where his son, Rudolf, was born.

In 1943 he sent two of his papers to Konrad Knopp, and in 1944 he was
invited to the University of Tübingen,4where he became E. Kamke’s assistant.5
He wrote his thesis, Einige Fragen der Limitierungstheorie (Some Questions
of Limit Theory), under Knopp’s supervision, and got his Doctorate degree
in 1944. By the end of WWII, Tübingen was under French control. The
French government saw Lorentz as an unwanted foreigner and did not let
him become a full professor at the University of Tübingen. In the spring
of 1946, Lorentz made his way to the American occupation zone, where he was
certified as a stateless person. Lorentz lived 13 years with that document until
his naturalization in the USA. After the war, he finished his habilitation6 in
Tübingen, and taught at the Goethe University Frankfurt (1946––1948), then
at the University of Tübingen (1948––1949) as an honorary professor,7 In 1946
Georg Rudolfovich Lorentz changed his name to Georg Gunter Lorentz, a name
that (according to him) he made up, and later to George G. Lorentz, which he
kept for the rest of his life.

Lorentz remembered the German period of his life as hard and full of
deprivations, but scientifically productive. Lorentz wrote about 20 papers

3 Since 1953, the alley is called Grivtsova Lane.
4 In his autobiography, Lorentz wrote: “We got lucky, we wanted to be as far from Soviet

influence as we could,” (3, p.5). He moved to Tübingen with his wife and new-born son, and
the Lorentz family had four more daughters there.

5 Because of his opposition to the Nazism, and because his wife was Jewish, Kamke had
to retire, but he was allowed to write books.

6 This granted him the right to lecture.
7 Honorarprofessor, so a teacher with a regular salary.
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on the theory of differential equations, the Fourier series, and the use of
permutations, some of which he wrote with Kamke and Knopp. He gave
lectures on Banach spaces to the teacher-professor staff.

Lorentz had an option to seek help of the United Nations Relief and
Rehabilitation Administration (UNRRA), but he and his wife wanted to stay
as far away from the Soviet occupation zone8 as possible. They made an
independent choice: Canada.

In 1949, Lorentz received a grant from a Canadian charitable foundation9

and moved to Toronto, where he started as an assistant and later became a
teacher at the university. He published his first book Bernstein Polynomials,
supervised doctoral students, and gave lectures that included his own results,
as well.

Dated March 29, 1931 — Lorentz’s class at Leningrad’s University. Top row (from
the left): Izrail Isaakovich Gordon, Boris Nikolaevich Sokolov, Vasily Nikitich Galich.
Bottom row (from the left): Nikolai Nikolaevich Markovets, Maria Danilovna Inpits
(?), George Rudolfovich Lorentz. This photo came from I.I. Gordon’s private archive,
and it’s his writing on the back, as well. It was published in the journal Seven Arts in
2011, release 11(24), by E.I. Gordon. I express my appreciation to G.M. Polotovsky,
who sent me this photograph.

In 1953, Lorentz was offered a job as a full professor at Wayne State
University in Michigan where he started working in approximation theory and

8 A decree from the Presidium of the Supreme Soviet of the USSR on April 19, 1943:
“On the penalties for German-Fascist villains, responsible for the murder and torture of the
Soviet population and captured soldiers, for the spies, for the traitors — Soviet citizens who
betrayed their homeland, and for their accomplices,” the penalties were: death by hanging
for the “traitors,” and a sentence of 15––20 years of hard labor for the “accomplices.”

9 The Lady Davis Foundation.
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taught there until 1959. Then, he was a professor at Syracuse University
in the state of New York (1959––1969), where he wrote his famous book,
Approximation of Functions; then he was a professor at the University of Texas
at Austin (1969––1980). In 1973, he spent some time in Stuttgart, with a prize
from the German Humboldt Foundation10 for his scientific achievements. Many
of Lorentz’s students became successful scientists. In 1980, Lorentz retired, but
he continued doing scientific research for 15 more years.

Lorentz’s main results belong to mathematical analysis: he has fundamen-
tal theorems in approximation theory and functional analysis, he developed
theories of interpolation of operators. He also worked in number theory. In his
books, he included works of Russian mathematicians, making them available
to Western readers. Lorentz spaces, as a generalization of Lp spaces, were
introduced by him in two papers: Some New Function Spaces (1950) and
On the Theory of Spaces Λ (1951). Lorentz was called the king of modern
approximation theory. For more details, see [3, 4], I especially recommend
G. Lorentz’s paper Mathematics and Politics in the Soviet Union from 1928 to
1953 [5].

Let’s include Evgeny Izrailevich Gordon’s memory in this article:

I will write how Lorentz and I came into contact. For a long time,
my father didn’t know what became of Lorentz, other than the fact
that he left with the Germans. Sometime in the ’50s, Fichtenholz told
him with resentment that Lorentz was seen under German occupation
basically wearing an SS uniform. My father, who was a very anti-Soviet
man, did not believe him. He decided it was a lie deliberately spread
by the KGB, that Fichtenholz, who was a very Soviet man, believed.
As you know, to look for Lorentz or even try to get information on
him in the Soviet Union was very dangerous.
However, in 1966, at the International Congress of Mathematicians in
Moscow, my father came up to the topologist Mac Lane, who knew
his name from “Gordon rings,” and asked him about Lorentz. Mac
Lane told him that Lorentz was a professor in Texas, and that he had
seven children. My father didn’t learn anything else about Lorentz.
Sometime in the mid-90s, Vladimir Mikhailovich Tihomirov told me
that there was a special release of the Journal of Approximation
Theory dedicated to Lorentz’s 80th birthday that contained Lorentz’s
autobiography, which mentioned my father in it. Tihomirov sent me
a copy of that article, which I couldn’t find now, but I think you can
easily find it — it was published in the early ’90s. I don’t remember
whether it was from that or other publications and stories that I
learned the details of Lorentz’s life.
His father was arrested before the war and he died in a camp when
Lorentz was still in Leningrad. He was in the Siege of Leningrad,

10 This prize gives highly qualified scientists from different countries the opportunity to
work on a scientific project of their choice with German scientists.
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but sometime around 1942 Lorentz, who was heavily ill, was taken
out of Leningrad. Germans were chasing them the whole time they
were escaping the city. In the end, they left completely exhausted
Lorentz in Tuapse. When the Germans came to that town, they didn’t
touch Lorentz because he was of German descent and gave him an
easy job as a clerk in the office. Aron Grigoryevich Pinsket told his
late student, Vladimir Aronovich Geyler, that one night, Lorentz ran
to him and warned him that the Germans were planning to kill all the
Jews in Tuapse the next day. They warned a few more people, and
they all escaped the town that night, saving themselves in the process.
Vladimir Geyler, my close friend, told me that himself.
When the Germans were leaving the USSR, they took Lorentz with
them. He went to Tübingen, where he took Kamke’s (author of
a famous textbook on differential equations that was translated to
Russian) vacated place as head of the department. A professor from
the University of Tübingen, Manfred Wolf, told me that. Wolf and
Lorentz became friends when Lorentz visited Tübingen from America.
I found Lorentz’s address from the note that Tihomirov sent me, and I
sent him a letter telling him of my parents’ lives. I added a photograph
of their class and asked for the names of the other people on it. He
replied quite quickly. Unfortunately, I couldn’t find his letter today. I
remember one sentence about my dad: ‘He introduced us to English
literature — Maugham and Joyce.’ He told me the names of everyone
in that photograph and described them as mathematicians, but said
he knew nothing of what became of them. His last phrase in the PS
stood out to me: ‘I never served in any army — not in the Soviet nor
in the German one.’ I might add that I didn’t mention anything about
his departure to Germany in my letter. I thought his response didn’t
imply a continuation of the conversation, so I replied in short, thanking
him for his letter. In the summer of 1999 I moved to America. When I
arrived, I didn’t call Lorentz, because I was scared that he might think
I needed help from him.
My wife had stayed in Russia for a little while longer. Sometime in
the beginning of 2002, she told me that a letter came from Lorentz
containing some of his papers and asking for my opinion on them. I
called him, told him that I was in America and asked him to send
those papers to my American address. He sent them to me. After
that, we regularly talked on the phone, until he died of a cold in 2006.
His son was the one who told me of his death. His last postcard to me
was dated April 4, 2005 — from Hawaii! He invited me to his house
in Chico, California, where he lived after he retired. In the nursing
house, he had a four-room apartment! I was planning on going, but
planned for too long...
Well, I have written everything I know about Lorentz. I hope some of
it was helpful.11

11 Private message from E.I. Gordon in his letter to G.I. Sinkevich.
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Galina Sinkevich
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Lorentz Spaces

Much of science and engineering centers on understanding functions that
describe physical, chemical, or biological processes. In mathematics, providing
such understanding organizes itself into the disciplines of real, complex, and
functional analysis. At the coarsest level, functions are typically classified
in terms of either their size, or their smoothness, or self-similarities. The
earliest measures of size were boundedness and integrability. Smoothness tries
to understand how the output of a function depends on small variations in
the input and has led to a myriad of notions circling around differentiability.
Self-similarities include periodicity and fractal structures.

The best-known quantifications of size are given by Lebesque Lp norms
(formulated by M. Riesz). If f is a real-valued measurable function defined
on a measure space (Ω, µ), the normed linear space Lp :=Lp(Ω, µ), 1≤ p≤∞,
consists of all µ measurable functions f for which the norm

‖f‖Lp := ‖f‖Lp(Ω,µ) :=


(∫

Ω |f |p dµ
)1/p

, 1 ≤ p < ∞,

ess sup
x∈Ω

|f(x)|, p = ∞,
(1)

is finite.
In their work, Hardy and Littlewood stressed the fact that Lp is a re-

arrangement invariant space. To explain what this means, we introduce for
any µ measurable function f its distribution function

µf (y) := µ{x ∈ Ω : |f(x)| > y}, y ≥ 0. (2)
This distribution function is decreasing on R+. All Lp norms of f are
determined from µf via the identity

‖f‖pLp = p

∫ ∞
0

yp−1µf (y) dy, 1 ≤ p < ∞. (3)

Thus, for the purpose of measuring size by Lp norms, two functions f , g which
have distribution functions equal almost everywhere have identical Lp norms
irrespective of their native measure spaces.

Two measurable functions f and g are said to be equi-measurable if
µf (y) =µg(y), a.e. on R+, with respect to the Lebegue measure. Notice that
µf is always defined on R+ := [0,∞). One can select a representative among
all equi-measurable functions as

f∗(t) := inf{y : µf (y) ≤ t}, t ≥ 0, (4)
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A function and its monotonic rearrangement.

which is also a non-increasing function defined on R+. The function f∗ is called
the decreasing rearrangment of f . It encodes all size properties of f relative
to Lp norms. For example,∫

Ω
|f |p dµ =

∫ ∞
0

[f∗(t)]p dt, 1 ≤ p < ∞. (5)

In his seminal paper [8], George Lorentz suggested using the rearrangement
f∗ as a general way to define spaces of functions described by size. The
idea is to simply apply a function norm to f∗. He suggested a cadre of
possibilities. The most important of these turned out to be the Lorentz spaces
Lp,q :=Lp,q(Ω, µ), described as all µ measurable functions f defined on Ω for
which

‖f‖Lp,q :=


{∫∞

0 [t1/pf∗(t)]q dt
t

}1/q
, 1 ≤ p, q < ∞,

sup
t>0

t1/pf∗(t), 1 ≤ p < ∞, q = ∞,
(6)

is finite. Notice that these spaces agree with Lp, 1≤ p<∞, when we choose
q = p but give a fine gradation of spaces near Lp when p is fixed and q
varies. The most important of these variants turns out to be the case q=∞,
which gives the spaces Lp,∞ commonly referred to as weak Lp spaces. The
membership condition for weak Lp is that

µ{x ∈ Ω: |f(x)| > y} ≤ Cy−1/p, y > 0, (7)

with C an absolute constant.
The subsequent impact of [8] was quite profound in a range of disciplines

including harmonic analysis, approximation theory, partial differential equa-
tions, and functional analysis. On the one hand, the new Lorentz spaces Lp,q
were instrumental in explaining the mapping properties of certain fundamental
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operators of analysis such as the Fourier, Hilbert, and Riesz transforms. On the
other hand, they served as the prototype for the development of new function
spaces such as Besov classes and approximation classes that remain important
to this day in our understanding of numerical methods. Perhaps, the most
important consequence was the development of a new branch of analysis called
interpolation of operators which helped unify several mathematical disciplines.

Regarding the latter point, the modern theory of interpolation of operators
can rightfully be traced to the work of M. Riesz who was interested, among
other things, in the mapping properties of the Fourier transform F . The
Hausdorff–Young theorem showed that F mapped Lp into Lp′ , 1 ≤ p ≤ 2,
where p′ is the conjugate index given by 1/p+ 1/p′ = 1. Riesz showed that
the Hausdorf–Young theorem is actually a consequence of a general principle
that any linear operator which is boundedly mapping L1 to L∞ and L2 to itself
will necessarily boundedly map Lp to Lp′ for 1≤ p≤ 2. This result was later
formally put into interpolation theorems (such as the Riesz–Thorin theorem)
and started the study of interpolation of operators. The Lorentz spaces played
a significant role in this new development in several important ways.

The Lebesgue L1 norm corresponds to the area of the subgraph (for positive
functions), while the L1,∞ norm corresponds to the area of the maximal inscribed
“rectangle.”

One of the main chapters of harmonic analysis is the Calderón–Zygmund
(CZ) program to understand the mapping properties of the fundamental
operators that arise in the theory of differential equations. These include
singular integrals and maximal operators such as the well-known Hardy–Lit-
tlewood maximal operator. The main vehicle for proving mapping properties
of operators is the above theory of interpolation. A prototypical example in
the CZ program is the Hilbert transform. M. Riesz showed that this operator
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mapped Lp into itself when 1<p<∞ but does not map L1 into itself. This
is a typical example where the “endpoint” behavior of the operator is opaque.
This endpoint behavior is nicely filled in via the Lorentz spaces. In the case
of the Hilbert transform, it turns out that it maps L1 into weak L1, i.e.,
into L1,∞. While this result is interesting in and of itself, even more is true.
Namely, any operator that boundedly maps L1 to weak L1 and L2 into itself
will automatically boundedly map Lp into itself for 1<p≤ 2. In other words,
to ascertain strong mapping properties of linear operators, it is enough to verify
weak mapping properties on pairs of spaces and deduce the strong mapping
via interpolation for intermediate spaces.

The subject of interpolation of linear operators began to organize itself into
unified studies in the late 1960s (see the treatises [1, 2]). Calderón introduced
his complex method of interpolation [4] and subsequently his treatment of
weak interpolation via rearrangements [5]. At more or less the same time,
the real method of interpolation initiated by Lions and Peetre came to the
forefront. The main theme of the real method of interpolation was to show
that a linear operator T which boundedly maps Banach spacesXi→Yi, i= 0, 1,
automatically maps X→Y for a staple of new spaces X, Y . These new spaces
are defined via a K-functional which, in the simplest case whenX1 continuously
embeds into X0, is

K(f , t) := K(f , t; X0, X1) := inf
g∈X1

‖f − g‖X0 + t‖g‖X1 , 0 < t < ∞. (8)

Examples of the new intermediate spaces X are the (θ, q)-spaces
Xθ,q = (X0, X1)θ,q consisting of all f ∈X0 for which

‖f‖qXθ,q :=

∫ ∞
0

[t−θK(f , t)]q dt/t, 0 < θ < 1; 0 < q < ∞, (9)

with the obvious modification for q =∞. One can rather easily show that
the above operator T boundedly maps Xθ,q into Yθ,q for each θ ∈ (0, 1) and
0<q≤∞. While the similarity between these spaces and the Lorentz spaces is
apparent, the connections have an even happier ending since when the measure
µ is finite,

K(f , t; L1, L∞) =

∫ t

0
f∗(s) ds, t > 0, (10)

and
(L1, L∞)θ,q = Lp,q, θ = 1− 1/p. (11)

A similar connection occurs when engaging smoothness spaces. In a
development quite similar to the Lorentz spaces, O. Besov [3] introduced a fine
gradation of smoothness spaces that carry his name. The space Bs

q(Lp(Ω))
consists of functions with smoothness of order s in Lp with q playing the
same role of fine gradation as in the case of Lorentz spaces. The connections
with Lorentz spaces become even clearer when one realizes that these Besov
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spaces are interpolation spaces between Lp and the Sobolev space W r(Lp(Ω))
when r > s. Indeed, the K functional for this pair is none other than the
modulus of smoothness ωr(f , t)p, and so the norm in the Besov space takes
the form (9). Besov spaces are now commonly used in the study of solutions to
partial differential equations and numerical analysis of these equations. Finally,
let us mention that interpolation spaces, which can be viewed as descendants
of the Lorentz spaces, are also a staple in approximation theory where they
are used to characterize the functions which possess a specified approximation
order (see [7]).

Ronald DeVore
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Leonid Vitalyevich Kantorovich (1912––1986)

Leonid Kantorovich contributed both to pure and applied mathematics and
always wished for these fields to inform each other. To this day he is the
only Russian/Soviet — and, indeed, the only East European — laureate of the

Nobel Memorial Prize in economics. His pi-
oneering mathematical contributions include
the theory of vector lattices, transport theory,
approximation methods (particularly in their
relation to functional analysis), and linear pro-
gramming. As an economist, he is renowned
for advocating the optimization methods in
planning. He is also recognized as a founder
of an entirely new field of study, which some
have even labeled a ’mathematical revolution’
in Soviet economics [9].

Kantorovich was born in 1912 in Saint Pe-
tersburg, to a middle-class Jewish family. A
prodigy, he entered university at 14 and gradu-
ated at 18, having already published more than
ten papers in Russian and French. Nurtured by
his teachers Grigory Fichtenholz and Vladimir

Smirnov, he very quickly became one of the young leaders of the Leningrad
mathematical school, and also established links to the Moscow mathematical
community.

Kantorovich started his mathematical work with real analysis. Early on,
he also became interested in applied methods, both in numerical analysis
(especially in finding solutions to partial differential equations) and in opti-
mization. His key contributions to ‘pure’ mathematics consist in developing
the theory of vector lattices (1935––1937) and in providing an abstract version
of — and some important results in — optimal transportation theory (1942).
One of the significant postwar results in applied mathematics [1] deals with
the convergence of Newton’s method.

In 1938, in response to a request from a group of engineers of a plywood
trust, Kantorovich formulated and solved several problems in what later came
to be called linear programming (linear optimization with linear constraints).
His insightful use of convexity theory and real analysis in solving economic
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problems, as well as, crucially, the interpretation of dual variables as prices,
was a pioneering contribution to economics [5]. In 1942, during World War II,
he was evacuated from Leningrad with his family. Kantorovich’s mother passed
away and his 9-month-old son died during the evacuation. As early as in 1942,
despite his multiple responsibilities related to the defense efforts, Kantorovich
completed a longer manuscript on economics and became a fervent advocate of
applying new optimization methods to improve Soviet planning. Specifically,
at the end of the 1940s, Kantorovich and his former student Victor Zalgaller
were working on optimization techniques for the cutting of materials [7].
Kantorovich’s efforts towards the implementation of his ideas, renewed after
the 20th Party Congress of 1956 and the wave of de-Stalinization, were met
with hostility by the planning authorities and Soviet economists alike. While
the former were resistant to change, the latter suspected that Kantorovich’s
approach to optimal planning was at odds with the official doctrine of Marxist
political economy. Because of this, the book he had mostly completed by 1942
was only published in 1959.

Kantorovich wanted to change both the economic organization of the Soviet
Union and the culture of its analysis. While he definitely failed in the former
task, the latter was a partial success. His influence grew after he received
the Stalin Prize in 1949 for his work on functional analysis and applied
mathematics and also for his pivotal contribution to the Soviet nuclear project.
Calling upon his well-established authority in the Academy of Sciences, his
connections to influential Soviet scientists, such as Andrei Kolmogorov, Sergei
Sobolev, and Mikhail Lavrentyev, and relying on the support of mathematically
minded Soviet economists, such as Vasily Nemchinov, Valentin Novozhilov, and
Albert Vainshtein, Kantorovich institutionalized what later became known as
‘mathematical methods in economics’ in both research and teaching [3]. Thus,
Soviet mathematical economics had been born. Across the Soviet Union linear
and non-linear optimization, input-output analysis, and even game theory were
taught and researched as part of this new field. This became possible thanks
to Kantorovich’s efforts.

In 1956, Tjalling Koopmans, a Dutch-American mathematical economist,
reached out to Kantorovich after reading his short abstract paper on optimal
transportation theory. The result of this interaction was the publication
of several papers — and a book — in English [8] and the almost universal
recognition of Kantorovich’s priority in introducing the basic problems and
methods of linear optimization [2]. In 1960, Kantorovich moved to Novosibirsk
to take part in building the Siberian branch of the Soviet Academy of Sciences.
During this time, mathematical methods in economics were officially accepted.
Mathematics was now seen as having the potential to improve the Soviet
economic system and thus contribute to the success of socialism. In Novosi-
birsk, Kantorovich and his colleagues (notably Gennady Rubinstein and Valery
Makarov) continued developing the ideas behind ‘optimal planning’, including
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The cover page of the book Mathematical methods in the organization and planning
of production, 1939.

its dynamic versions. Some particular applications of linear optimization were
also underway [4].

That period of Kantorovich’s career as well as the years that followed are
not well-documented. The archival data is still unavailable, both in Novosibirsk
and in Moscow — where Kantorovich moved to in 1971, working first at the
State Committee for Science and Technology and later, from 1976 onwards,
for the newly founded Institute of Systems Research. It might be that in the
coming years, we will learn more about Kantorovich’s role in Soviet academic
and policy debate.

In 1975, Kantorovich shared a Nobel Memorial Prize in economics with
Koopmans. Koopmans was frustrated that the Nobel committee did not award
the prize to George Dantzig, a mathematician who introduced the simplex
method, a powerful technique for solving linear programming problems, and
who generally contributed to the creation of linear optimization as a separate
field of applied mathematics. Koopmans even suggested jointly declining the
prize. But it didn’t happen. Other complications were political: this same
year, Andrei Sakharov got the Nobel Peace Prize. The press in Stockholm
cared less about optimal planning and more about how Kantorovich, at that
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time a perfectly loyal Soviet citizen and bureaucrat, felt about getting the prize
together with Sakharov.

During the last decades of his life, Kantorovich was less active academically
but remained quite active as a policy expert and was supporting research in
mathematical economics and related fields [6]. His mathematical insights, his
extraordinary ability to delve into economic problems and ingeniously solve
them, and his sharp vision in both academic and policy contexts, made him a
crucial figure in Soviet science and beyond.

Ivan Boldyrev
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Kantorovich’s influence in optimal transport

Kantorovich, a functional analyst motivated by economics applications,
provided a manageable formulation of the transport problem (now called
“Kantorovich formulation”) and developed the basis of the duality theory in
optimal transport, opening the way for impressive developments over the past
thirty years. In 1975, Kantorovich was awarded the Nobel Prize in economics,
jointly with Tjalling Koopmans, “for their contributions to the theory of
optimum allocation of resources.”

The origin

In 1781, the French mathematician Gaspard Monge got interested in the
following problem: Suppose you need to carry some debris from one location
to another to build fortifications. How should the transport occur to minimize
the average distance?
In his memoir [10], Monge discussed the two and three-dimensional problems,
showing a profound understanding of the problem and its challenging aspects.
In particular, Monge had the intuition that, in 3 dimensions, optimal transport
paths should be orthogonal to a certain 1-parameter family of surfaces.

More than 150 years later, in 1938, the Soviet mathematician Leonid
Kantorovich laid the foundations of linear programming. Then, in 1942, he
investigated a variant of the optimal transport problem, that we now describe.

Let X be a compact metric space with the distance function d, let µ0

and µ1 be probability measures on X, and let Π(µ0, µ1) denote the space of
probability measures on X ×X having µ0 and µ1 as marginal distributions.
The set Π(µ0, µ1) is called the set of transport plans. Then, Kantorovich
considered the problem

K(µ0, µ1) := inf
γ∈Π(µ0,µ1)

∫
X×X

d(x, y) dγ(x, y). (1)

To explain the intuition behind this problem, consider the case when
µ0 =

∑N
i=1 αiδxi and µ1 =

∑M
j=1 βjδyj . Think of these measures as follows:

there are N bakeries located at positions (xi)i=1,...,N and M coffee shops
located at (yj)j=1,...,M , with the i-th bakery producing an amount αi ≥ 0 of
bread and the j-th coffee shop needing an amount βj ≥ 0. The assumption∑

i αi =
∑

j βj = 1 implies that the demand is equal to the supply.



Kantorovich’s influence in optimal transport 353

Then, (1) corresponds to looking at matrices (γij)1≤i≤N , 1≤j≤M such that:
(i) γij ≥ 0 (the amount of bread going from xi to yj is a nonnegative

quantity);

(ii) ∀ i : αi =
∑M

j=1 γij (the total amount of bread sent to all coffee shops is
equal to the production);

(iii) ∀ j : βj =
∑N

i=1 γij (the total amount of bread bought from all bakeries
is equal to the demand);

(iv) γij minimizes the cost
∑

i,j d(xi, yj)γij (the total transportation cost is
minimized).

It is interesting to observe that the constraint (i) is convex, the constraints
(ii) and (iii) are linear, and the objective function in (iv) is also linear (all
with respect to γij). In other words, Kantorovich’s formulation corresponds to
minimizing a linear function with convex/linear constraints.

Thanks to the compactness of X, it is not difficult to prove that minimizers
in (1) always exist. However, one would like to understand their structure.
In [5], Kantorovich established the following fundamental duality theorem.
Theorem 1.

K(µ0, µ1) = max

∫
X
ϕ(x) d(µ0−µ1)(x),

where the maximum is taken over all ϕ, 1-Lipschitz relative to the distance d,
namely,

|ϕ(x)−ϕ(y)| ≤ d(x, y) for all x, y ∈ X.

These 1-Lipschitz functions are called potentials by Kantorovich, and a
transport plan γ is called a potential plan if there exists a potential function ϕ
such that

ϕ(x)−ϕ(y) = d(x, y) for γ-a.e. (x, y).

The above theorem is an infinite-dimensional version of the classical duality
theorem of linear programming: the value of the inf in the original problem is
the same as the sup in the second “dual” problem. It is important to recall that,
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at that time, there was no duality theory for infinite-dimensional programming
problems.

Thanks to this theorem, Kantorovich deduced that transport plans are
optimal if and only if they are potential. Also, in 1947, Kantorovich saw
the proceedings of a conference held in Leningrad (St. Petersburg) on the
bicentennial of Monge’s birth, and realized that the surfaces of Monge are
just the level sets of the optimal potentials that he had defined a few years
before [6].

Modern formulation

Monge’s version of the optimal transport problem is nowadays formulated
in the following general form: Given two probability measures µ0 and µ1

respectively defined on measurable spaces X0 and X1, find a measurable map
T :X0→X1 such that T#µ0 = µ1 (i.e., µ1(A) = µ0(T−1(A)) for every A⊂X1

measurable) and that minimizes the transportation cost. This last condition
means ∫

X0

c(x, T (x)) dµ0(x) = min
S]µ0=µ1

∫
X0

c(x, S(x)) dµ0(x),

where c :X0×X1→R is a given cost function. When the transport condition
T]µ0 =µ1 is satisfied, we say that T is a transport map, and if T also minimizes
the cost, we call it an optimal transport map.

In this general setting, Kantorovich’s formulation of the optimal transport
problem becomes

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ(x, y). (2)

With these definitions, Monge’s problem becomes a particular case of Kan-
torovich’s problem thanks to the following observation:

T#µ0 = µ1 ⇒ γT := (id×T )#µ0 ∈ Π(µ0, µ1).

In other words, every transport map induces a transport plan. Also, one can
easily check that T and γT have the same transportation cost. Thus, Monge’s
problem corresponds to a particular case of Kantorovich’s problem, where one
only considers transport plans induced by maps.

It turns out that a duality result “à la Kantorovich” holds in great generality,
and it is at the core of the proof of existence and uniqueness of optimal maps
(see, for instance, [4, Chapter 2]). In particular, duality theory is a key tool in
the proof of Brenier’s Theorem for the quadratic cost in Rn [1], a milestone in
the theory of optimal transport.

Kantorovich/Wasserstein distances

Let X be a compact metric space, and let P (X) denote the space of probability
measures on X. One can define the so-called Wasserstein distances on
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P (X)×P (X) as follows: for p≥ 1,

Wp(µ0, µ1) :=

(
inf

γ∈Π(µ0,µ1)

∫
X×X

d(x, y)p dγ(x, y)

)1/p

.

One can prove that Wp are distances on the space of probability measures
that metrize the weak convergence (see, for instance, [4, Chapter 3]). We note
that, when p= 1, W1 coincides with the Kantorovich distance K defined in
(1). Also,

Wp(δx, δy) = d(x, y), ∀x, y ∈ X.
In other words, the embedding

(X, d) 3 x 7→ δx ∈ (P (X), Wp)

is an isometry for any p≥ 1.
In [7], Kantorovich and Rubinstein noted that the Kantorovich distance

K =W1 can be extended to a norm over the set of signed measures M(X) on
X. It is common to call this extension the Kantorovich–Rubinstein norm.
This norm property is a particular feature of the exponent p = 1, and it
provides an explicit isometric embedding of an arbitrary metric space (X, d) in
a Banach space. Also, as a consequence of Kantorovich’s fundamental duality
theorem, the Kantorovich–Rubinstein norm on a metric space (X, d) can be
characterized as the maximal norm ‖ · ‖ on M(X) which is “compatible” with
the distance, in the sense that ‖δx− δy‖= d(x, y) for all x, y ∈X.

We refer the interested reader to [15] for a complete historical account of
Kantorovich’s contributions.

Why Wasserstein? The terminology “Wasserstein distances” is due to Do-
brushin [2]: While investigating the existence and uniqueness of random fields
with a given system of conditional distributions, it was convenient for him to
use the Kantorovich distance K. However, Dobrushin was only aware of the
Vasershtein paper [14] (Vasershtein worked in the laboratory he headed) but
not of Kantorovich’s publications, and therefore he introduced the terminology
“Vasershtein distance”, which later became (in the transliteration from Cyrillic
to the Latin alphabet) Wasserstein. Although unfair towards Kantorovich,
the expression “Wasserstein distances” has been very successful, and nearly all
recent papers in optimal transport use this convention.

Wasserstein distances and convergence estimates

Wasserstein distances are particularly useful in problems where one wants to
quantitatively estimate the distance between two measures, especially when
some measures are atomic.

A classic example is provided by a second paper of Dobrushin [3] on kinetic
theory, where he investigated the convergence of particle Newtonian dynamics
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to the so-called Vlasov equation. In that paper, by a fixed point argument
involving an appropriate variant ofW1, he proved the existence and uniqueness
of solutions to the Vlasov equations with smooth force fields. This result and
approach have been a fundamental reference point in the kinetic community.

We mention here a couple of more examples, referring to [4, Chapter 5] for
more detail and references.
• Central limit theorem. The central limit theorem states that if {Xi}i∈N

is a sequence of independent random variables with the same law, mean 0, and
variance 1, then the average ¯̄Xk := 1

k

∑k
i=1Xi converges in law, as k→∞, to a

standard Gaussian. One may desire to make this statement quantitative: How
far can the law of ¯̄Xk be from a Gaussian? Wasserstein distances are a very
useful tool to address this question.
• Random matching. Let X1, . . . , Xk be k independent points uniformly

distributed on the cube [0, 1]d, and consider the (random) empirical measure
µk = 1

k

∑k
i=1 δXk associated to the k points. As k grows, one expects µk to

approximate the uniform measure on [0, 1]d. Then, a very natural question
is the following: What is the convergence rate to 0 of the random variable
Wp(µ

k, dx|[0,1]d)?

Convexity along Wasserstein geodesics

Let (X, d) be a geodesic space (i.e., a complete separable metric space such that
every couple of points can be joined by a minimizing geodesic), and consider
the space P2(X) of probability measures with finite second moment, endowed
with the Wasserstein distance W2. It turns out that (P2(X), W2) is a geodesic
space too.

Now, given two measures µ0, µ1 ∈P2(X), let (µt)t∈[0,1] be a constant-speed
geodesic joining µ0 to µ1. A crucial idea that has found a variety of applications
is that the behavior of µt captures some information about the geometry of
the underlying space.

More precisely, fix a reference measure ν on X, and consider the following
functionals on P2(X): Given a measure µ ∈ P2(X), write it as µ= ρν + µs,
where µs is the singular part of µ with respect to ν. Then we define

HN (µ) = −
∫
X
ρ1−1/N dν, N ≥ 1,

H∞(µ) =

{∫
X ρ log(ρ) dν if µs ≡ 0,

+∞ otherwise.
When X =Rn, ν is the Lebesgue measure, and N ≥n, McCann proved in [9]
that the above functionals are convex along Wasserstein geodesics (in short,
displacement convex ). This fact was the starting point for many applications,
which we now describe briefly.
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• Gradient flows. In [11], Otto understood that many evolution PDEs
can be interpreted as gradient flows of some “energy functionals” in the
space P2(Rd) with respect to W2. For instance, the gradient flow of H∞ is the
heat equation, while the gradient flow of HN gives a porous-medium equation.
In particular, whenever these energy functionals are displacement convex, such
an interpretation turns out to be extremely well-adapted to proving existence,
uniqueness, stability, and asymptotic behavior for solutions.

• Geometric and functional inequalities. Displacement convexity can be
used to prove some geometric and functional inequalities. As an example,
given two open bounded sets A, B ⊂ Rn, consider the probability measures
µ0 =

1A
|A| and µ1 =

1B
|B| . As shown in [9], the displacement convexity of Hn

allows one to prove the Brunn–Minkowski inequality:

|A+B|1/n ≥ |A|1/n + |B|1/n.

Since such proof relies only on the convexity of Hn, it can be immediately
extended to any Riemannian manifold on which Hn is displacement convex.

• Riemannian manifolds and Ricci curvature bounds. As a natural exten-
sion of McCann’s result [9], given a Riemannian manifold (M , g) with reference
measure ν = volg, one may wonder when the functionals HN and H∞ are
displacement convex. The combination of results of many authors can be
summarized in the following statement, relating displacement convexity and
Ricci curvature.
Theorem 2. Let (X, ν) = (M , volg), and let N ≥dimM . Then HN (resp. H∞)
is displacement convex if and only if Ricg ≥ 0.

This result gives a robust characterization of the geometric condition
Ricg ≥ 0 (there exist also generalizations to characterize Ricg ≥K g, K ∈R)
in terms of the convexity of suitable functionals, and it has been the starting
point for Lott-Villani and Sturm [8, 12, 13] to give a meaning to lower bounds
on the Ricci curvature on a metric measured space, a theory that is still very
active.

Conclusion

In this short note we have seen the crucial influence of Kantorovich on the
development of optimal transport. Also, we have described some examples of
applications of Kantorovich/Wasserstein distances to probability, PDEs, and
geometry. For an introduction to optimal transport and other applications, we
refer to the recent book [4], and the references therein.

Alessio Figalli
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Alexander Danilovich Alexandrov (1912––1999)

A few recollections, speculations, and quotations about A.D. Alexandrov, a
prominent mathematician, alpinist, philosopher, and humanist.

The writing below is for the most part based on my recollections of a very
superficial acquaintance with A.D. during the last decade of his life, as well as
some stories my dad1 told me. I also make a few general remarks about my own
insights regarding some of the many punchlines
of A.D.’s life. These remarks are no more
than speculations since I am not a historian
of mathematics. They come from my own
understanding of a few sources, written in Rus-
sian, and from speaking to people. There is a
very detailed and well-thought-out biographical
sketch by O.A. Ladyzhenskaya and some vivid
recollections by A.M. Vershik. I use loose trans-
lations of small parts of them here. They are
in Russian, so I include an abridged retelling,
mostly made up of quotations, of these papers
in the Russian version of this essay.

In English, a much more detailed and gor-
geously written essay about A.D. by Semen
Kukateladze can be found on the Internet.2
I highly recommend it for a smoother read.

A.D. was obviously ingenuous in all areas
that attracted him, and everything he touched would bloom or sprout another
blossom. Not only in math, where his achievements are surely outstanding
but also in service to the scientific community and as a support to remarkable
people during those difficult times. In culture, including poetry. Philosophy.

1 Yuri Burago (born 1936) is a Russian Geometer from Alexandrov’s School. Yuri is a
creator (with his students Perelman and Petrunin, and M. Gromov) of what is known now
as Alexandrov Geometry. With V. Zalgaller, he also authored a classic book “Geometric
Inequalities,” bringing them to the state of the art. Yuri Burago was Head of the Laboratory
of Geometry and Topology at LOMI (St. Petersburg Branch of the Steklov Institute for
Mathematics) and Professor at SPbU. He took part in a report for the United States Civilian
Research and Development Foundation. He was a recipient of the Steel Prize in 2014.

2 http://www.math.nsc.ru/LBRT/g2/english/ssk/memorye.html

http://www.math.nsc.ru/LBRT/g2/english/ssk/memorye.html
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The history of mathematics. In methods of teaching math in schools, including
A.D.’s work on textbooks in geometry for school children. In mountaineering.
“Alexandrov’s School” and Alexandrov’s seminar had a huge influence on the
mathematical community in the USSR.

It is extremely difficult to write about A.D. The initials A.D. are how
Alexander Danilovich Alexandrov’s name was abbreviated by most who knew
him when talking about him. Too much is written about A.D. already. It would
be silly if I spoke a lot about Alexandrov’s math: A.D.’s mathematical interests
were very broad, and the only area of his work I know reasonably well is the one
that gave rise to what is now known as Alexandrov geometry. Actually, there
are two Alexandrov geometries, very different from each other, with upper and
lower curvature bounds. The starting technology is the same, but then the
spirit of the two areas diverges completely. More than a third of a 450+ page
book that I wrote with my dad and Sergei Ivanov is devoted to it. Also, my
lecture at the ICM-98 is based on applications of the Alexandrov geometry of
k≤ 0 to dynamics. Well, yet another area worth mentioning is: The theory
of surfaces with bounded integral of the positive part of the curvature (the
condition can be reformulated without integration, using the excess of angles
in triangles). Regardless of the fact that the theory is 2-dimensional, it turned
out to be notoriously difficult and highly non-trivial. It is enough to recall
Alexandrov’s problem, whose formulation is very elementary and looks like an
exercise, that is still open, with many mathematicians “breaking their teeth”
trying to attack it. S.T. Yau even included this problem in his list of the 50
most important problems in geometry. The problem asks: what is the maximal
possible area of a 2-sphere with a length metric of non-negative curvature and
an intrinsic diameter ≤ 1? The extremal case is definitely not a round sphere...
Note that this metric can be realized as the induced metric on the surface of
a convex body in R3, which may be degenerate. That is, it lies in a plane and
the boundary is regarded as the double of the region, like the surface of a coin.
By the way, the latter statement is also attributed to A.D. and is known as
Alexandrov’s theorem (one of many with this name). Anyhow, if I were to be
writing about A.D.’s math I would inevitably be repeating myself. There are
also results of A.D. that I have only heard about through the interpretations of
other people. For instance, below is a free translation of a text by Academician
O.A. Ladyzhenskaya:

The years of Rectorship for A.D. were years of personal flourishing. On
the one hand, not only does he not leave mathematics, but quite the opposite,
he reaches a high summit which is now known as “The Maximum Principle
of Alexandrov.” Some parts of his result were understood only a quarter of a
century later. It is one of the cornerstones for the theory of the existence of
solutions for completely nonlinear equations of the elliptic type, and later for
the parabolic type. For the theory of viscosity solutions, A.D.’s results, as well
as his earlier results on convex functions, were foundational. In 1975, A.D. was
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elected to the oldest Academy, the National Academy of Sciences of Italy, also
known as the “Academy of the Forty.”

I can only write based on my recollections, which mostly date back some
33 to 38 years, and on several stories that my dad, A. Vershik and a few others
told me. I do not use quotation marks when quoting someone if I am not sure
of the precise wording. This is what I remember through the mist of a long
time.

Alexandrov’s Mountaineering guide certificate.

I first met A.D. when I was an undergrad. I attended his topic course, even
though I knew this math relatively well already. I enjoyed the show. During
the first lecture, A.D. stood behind a desk and just jumped on it pushing
himself up with two legs simultaneously. Not such a big surprise: he was a
very skilled mountaineer. A.D. was, however, 70 years old at that time. And
then he suggested the young men in the class try it. It hurts a lot to hit one’s
shins against the sharp edge of the desk... And then A.D. said something like
this: “If you cannot jump, let me at least teach you some math.” A.D. engaged
students by surprising them, involving them, and then teaching math in a very
clear and definitely not boring way. I think his teaching style influenced many,
including me.

He would run down the stairs, leaping over three steps, and would yell at
the students: Let me pass, you have plenty of time, and I don’t! In his lectures,
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he used non-standard (at least at that time) terminology and employed a lot
of analogies. He called a sequence of points in a metric space “a dotted line.”
He liked to tell stories, and, having an encyclopedic knowledge, he knew a
lot. Later we occasionally met at the chair of geometry, and A.D. slightly
distinguished me from the other students. Not because of my math, even
though I already had some results. A.D. loved to use quotations from various
books, he could quote plenty off the top of his head, and would then ask: Where
is this from? I could answer reasonably often. He had very broad interests,
not only in math and mountaineering, but also in philosophy, literature, art,
and physics.

My dad told me that when A.D. was in love with his future wife Svetlana,
he wrote rhymes for her... in English! I recall attending an international
conference where A.D. delivered a spectacular talk, in English of course. He
was over 80 years old. I remember the beginning. He said:

At my age, only a fool would be speaking about his own results, but
yesterday a friend of mine phoned me from Novosibirsk and told me
of two beautiful results he had proven.

And then he spent the rest of the lecture explaining these results.
After he finished, while walking down the stairs from the podium, he said

loudly, in Russian: Why don’t they let an old man die in peace? Then there
were noises echoing throughout the room: Russian-speaking listeners were
translating A.D.’s words for their neighbors. After the lecture, someone asked
A.D. how he had managed to learn English so well. I am pretty sure A.D. read
highly linguistically sophisticated authors like William Somerset Maugham,
and obviously a lot of English poetry, but he did not like obvious answers. He
said: “I read O’Henry...”

I noticed that A.D. always wore a black glove on one of his hands. I asked
my dad why and he told me that A.D. had had encephalitis many years ago.
Some of the nerves were damaged and so one hand felt cold even during hot
weather. A.D. kept doing high-class mountaineering, however, even after he
had almost fully recovered from this oftentimes fatal disease.

A.D. was a Gentleman with a capital G. He always dressed as and behaved
like a nobleman with lineage going back ten generations. He was born into a
noble and highly educated family of school teachers in a village near Ryazan,
where they had a country house. It happens that I visited A.D.’s apartment
in Leningrad a couple of times many, many years ago. I was wet behind the
ears, having just finished my undergrad studies at Leningrad State University,
and A.D. was an Academician and former Rector of the University. He would
always take my coat and then help me to put it back on later on. I was
impressed and am trying to borrow this courteous habit from him, but for
him — this was in his blood.

A.D. hated lying, even though he knew that, during Soviet times, lies were in
some cases inevitable. G. Perelman was formally a student of A.D. at LOMI,
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though Perelman’s actual adviser was my dad. Why? Because Perelman is
ethnically a Jew, and the only way for him to be able to study at LOMI
at those times was this little legerdemain. My dad, however, told me the
following story. At Perelman’s thesis defense, L.D. Faddeev, who chaired the
committee, asked A.D. if he could say a few words on behalf of his advisee.
A.D. answered: “I hardly understood a thing from Perelman’s results. Do you
want me to explain why he is my postgraduate student?” And Faddeev said:
“No, thank you.”

A.D.’s manner of speech was extremely clear and sharp, at times even
harsh, though A.D. was always perfectly polite in the way he expressed himself,
although not necessarily in the meaning of what he said... On the other hand,
it seems that A.D. even enjoyed it when someone was impertinent and talked
back to him. I guess he took this as his interlocutor having individuality and
character.

I personally met A.D. when he reached the age of 70. He was an extremely
bright, energetic, clear, and original-thinking young old man. I hardly can
imagine how fantastic he was as a thirty-year-old!

After A.D. defended his diploma paper “Computation of the energy of
divalent atoms using Fock’s method”, and by obtaining the highest grade for
it, he was recommended to continue studies as a postgraduate student. He
declined, saying he could not promise he would always be doing proper things.
At the time, this most likely meant “the things wanted from me by those
in power.” He was scolded by the administration but got compliments from
advisors. For example, V.A. Fock, a famous theoretical physicist and member
of the Academy of Sciences, said: You are too decent a man; and B.N. Delone,
a famous mathematician and a corresponding member of the Academy at the
time, said: Alexander Danilovich, you really are not enough of a career chaser.

Both the aforementioned teachers of A.D. were right, though at the time
they could hardly foresee the complicated consequences brought on by A.D.’s
incredible talent and his remarkable personality. This combination of qualities
during Soviet times inevitably resulted in a lot of controversies and contradic-
tions.

On the one hand, A.D. had a fantastic career. He was a member of the
Communist Party, was elected to the Academy of Sciences, was for some
period the Rector of the Leningrad State University, and won lots of the most
prestigious prizes and extensive recognition. He helped a lot of people who
were in the doghouse, so to speak, and stopped some scoundrels from moving
up to leading positions. He supported R.I. Pimenov, who shared an office room
with my dad and V. Zalgaller, up until Pimenov was exiled to Syktyvkar for
seven years despite the fierce attempts of A.D. to save him. He stopped a
dishonest and sham scientist I.I. Prezent, a protégé of Lysenko, and the same
breed, from getting an influential position at the Leningrad University, even
though N.S. Khrushchev, the leader of the former USSR, supported Prezent



364 Alexander Danilovich Alexandrov

in 1955, two years after the death of Stalin when almost everyone was badly
scared...

Khrushchev yelled at A.D. He said something like the following: How could
you, the Rector, not obey directions! In Stalin’s time you would be sentenced
to death! And still, A.D. just “...showed his bared teeth.” [1] This was A.D.’s
“...angry reaction to danger” [1]. This does not mean that A.D. was a man
without a sense of fear, however. He just had the capacity to overcome it.

There are many stories like the two described above. One recalls A.D.’s
valiant standpoint with regards to the article by N.P. Dubinin “Biological and
Social Heredity...” (see [1] for details). A.D. had appraised this composition as
an outstanding piece of antiscientific literature, he said: “I am convinced that
to read the article by N.P. Dubinin and the relevant controversy is as vital for
a young scientist of any specialty as the perusing of the shorthand record of
the notorious August Session of the Lenin All-Union Academy of Agricultural

Sciences (VASKhNIL in the Russian abbrevi-
ation) which took place in 1948.” A huge
achievement was A.D.’s hiring of V. Rokhlin,
a great mathematician and person, who was
badly in disgrace, as a faculty member at the
Leningrad State University.

Yet A.D. himself was for certain periods of
time in disgrace. This is a huge controversy.
He was neither a “tame” nor a “loyal” man, this
was clear, and yet he was still appointed rector
of the second largest university. My under-
standing, perhaps inaccurate, is that he became
a member of the Communist Party partially
because this gave him additional leverage for
doing the right things. Being a member of the
Party was an ambiguous success, as some may
now safely say, but times were different then.

With A.D.’s unyielding and absolutely honest personality, I can hardly believe
that A.D. would join the Communist Party for purely practical reasons, even
those as honorable as the ones suggested above. My guess is that the situation
was more complicated. From the memoirs written by those who knew A.D.,
it seems that for some time he sympathized strongly with socialistic ideas a la
Marx and Lenin, like many great people of the time. This was no surprise: the
injustice and imperfectness of society were evident. Who knows, maybe past
loyalty to these ideas also influenced his decisions. I heard from A.M. Vershik
that he had very different attitudes individually towards Stalin, Lenin, and
Marx. Only lessons learned during the 20th century eventually showed that
following these ideas leads to even more unfairness and cruelty, and A.D. surely
realized this. A.D. witnessed Perestroika, however, and the first years of its
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consequences, and did not really appreciate it nor took it too well. From what
I know, he was especially concerned with the way that Perestroika affected
the scientific community and science education. Perhaps this and what is now
known as “criminal Petersburg”, as well as examples similar to it, caused A.D.’s
mind to be somewhat obsessed with socialist and communist ideas, oftentimes
vaguely referred to as Marxism, during his later years. Maybe A.D.’s approach
was more anti-capitalistic. I doubt anyone can responsibly say now what A.D.’s
thoughts were. Maybe, looking back, A.D. had a nostalgia for the tempting
ideals of the Soviet Times, regardless of the “sloppy” implementation of those.
I am only guessing.

Even with A.D.’s espousal of socialistic ideology, he was several times on
the verge of being expelled from the Party. He was pretty much forced to
leave his position as rector, though formally he quit of his own accord. As
funny as it may sound, A.D. himself had been “exiled” to Peterhof along with
the University. Apparently, the authorities preferred to keep stubborn people
away from Leningrad.

According to S.S. Kutateladze, A.D. had a strong stereotype: Everyone
who hates A.D. is a potential, if not complete, scoundrel. As described by his
students, friends, and relatives, A.D. was exceptionally kind, even tender, very
attentive, and scrupulous.

A man of passion, A.D. always remained self-critical. As expressed by V.I.
Smirnov, A.D. controlled the University using the power of moral authority.

According to S.S. Kutateladze, A.D. knew a lot about religion, always
contrasting religious belief and scientific search. He was fond of reiterating that
he believed in nothing. This statement usually produced the following retort
in the audience: “Neither in communism?” This, in turn, always generated an
affirmative answer in A.D. It goes without saying that the A.D.’s lectures were
often followed by sneaky letters sent to various local party committees.

V. Zalgaller saved in his memory the following lines:

My heart is full of burning wishes,
My soul is under spell of thine,
Kiss me: your kisses are delicious
More sweet to me than myrrh and wine.
Oh lean against my heart with mildness,
And I shall dream in happy silence,
Till there will come the joyful day
And gloom of night will fly away.

S.S. Kutateladze wrote:

Not later than in 1944 A.D. had made this interpretation in the English
Language of a celebrated poem was written by A.S. Pushkin in Russian
as far back as in 1825 ...
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In June of 1993, S.S. Kutateladze received the following lines “in sloppy
handwriting”:

Since legs, nor hands, nor eyes, nor strong creative brain,
But weakness and decay oversway their power,
I am compelled forever to refrain
From everything but waiting for my hour.

I am grateful to D. Belousov, M. Guysinski, and A. Reshetikhina for their
help in editing the essay, and to D. Alexandrov, Yu. Burago, N. Kalinin,
A. Vershik, and A. Werner for also correcting factual mistakes, and for their
recollections, advice, and insights.

Dmitry Burago
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Alexandrov’s embedding theorem

Alexandrov’s embedding theorem provides a complete description of the
intrinsic geometry of surfaces of convex polyhedrons. We give a sketch of its
proof.

The intrinsic distance between two points on the surface of a convex
polyhedron is defined as the length of a shortest curve on the surface between
these points.

Recall that the sum of angles at the tip of a convex polyhedral angle is less
than 2π; this statement can be found in a school textbook [6, § 48].

It is easy to see that the surface of a convex polyhedron is homeomorphic to
the sphere. Therefore the statements above imply that the surface of a convex
polyhedron equipped with its intrinsic metric is an example of a polyhedral
metric on the sphere with the sum of angles around each vertex at most 2π; a
metric is called polyhedral if the sphere admits a triangulation such that every
triangle is congruent to a plane triangle.

Alexandrov’s theorem states that the converse holds if one includes in
the consideration twice covered polygons. In other words, we assume that a
polyhedron can degenerate into a plane polygon; in this case, its surface is
defined as two copies of the polygon glued along their boundary.

Further, we assume that a polyhedron can degenerate to a plane polygon.

Theorem. Alexandrov’s theorem

1. A polyhedral metric on the sphere is isometric to the surface of a convex
polyhedron if and only if the sum of angles around each of its vertex is
not greater than 2π.

2. Moreover, a convex polyhedron is defined up to congruence by the
intrinsic metric on its surface.

A.D. Alexandrov has many remarkable theorems, but in our opinion, this
theorem is the most remarkable. At the same time, its proof is elementary; it
could be explained to anyone familiar with basic topology.

This theorem has many applications. In particular, it is used in the proof
of its generalization [4] that gives a complete description of intrinsic metrics on
the sphere that are isometric to convex surfaces in Euclidean space. The latter
statement is fundamental in a branch of modern mathematics — the so-called
Alexandrov geometry.
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The first part is central; it is called the existence theorem. The second part
is called the uniqueness theorem; it is a slight variation of Cauchy’s theorem
about polyhedrons. (There is another uniqueness theorem of Alexandrov that
generalizes Minkowski’s theorem about polyhedrons.)

According to the theorem, a convex polyhedron is
completely defined by the intrinsic metric of its surface. In
particular, knowing the metric we could find the position
of the edges. However, in practice, it is not easy to do. For
example, the surface glued from a rectangle as shown on
the diagram defines a tetrahedron. Some of the glued lines
appear inside facets of the tetrahedron and some edges

(dashed lines) do not follow the sides of the rectangle.
The theorem was proved by A.D. Alexandrov in 1941 [3]; we will present a

sketch of his proof. A complete proof is nicely written by A.D. Alexandrov in
his book [2]. Yet another proof was found by Yu.A. Volkov in his thesis [8]; it
uses a deformation of three-dimensional polyhedral space.

Space of polyhedrons and metrics

Space of polyhedrons. Let us denote by Φ the space of all convex polyhedrons
in the Euclidean space, including polyhedrons that degenerate to a plane
polygon. Polyhedra in Φ will be considered up to a motion of the space, and
the whole space Φ will be considered with the natural topology (an intuitive
meaning of the closeness of two polyhedrons should be sufficient).

Further, denote by Φn the polyhedrons in Φ with exactly n vertices. Since
any polyhedron has at least three vertices, the space Φ admits a subdivision
into a countable number of subsets Φ3, Φ4, . . .

Space of polyhedral metrics. The space of polyhedral metrics on the sphere
with the sum of angles around each point at most 2 · π will be denoted by Ψ.
The metrics in Ψ will be considered up to an isometry, and the whole space
Ψ will be equipped with the natural topology (again, an intuitive meaning of
closeness of two metrics is sufficient).

A point on the sphere with the sum of angles strictly less than 2 · π will
be called an essential vertex. The subset of Ψ of all metrics with exactly n
essential vertices will be denoted by Ψn. It is easy to see that any metric in Ψ
has at least three essential vertices. Therefore Ψ is subdivided into countably
many subsets Ψ3, Ψ4, . . .

From a polyhedron to its surface. Recall that the surface of a convex polyhe-
dron is a sphere with a polyhedral metric such that the sum of angles around
each point is at most 2 ·π. Therefore passing from a polyhedron to its surface
defines a map

ι : Φ → Ψ.
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Note that the number of vertices of a polyhedron is equal to the number of
essential vertices of its surface. In other words, ι(Φn)⊂Ψn for any n≥ 3.

About the proof

Using the notation introduced in the previous section, we can give the following
more exact formulation of Alexandrov’s theorem.

Reformulation. For any integer n≥ 3, the map ι is a bijection from Φn to Ψn.

We sketch the original proof of A.D. Alexandrov. It is based on the
construction of a one-parameter family of polyhedrons that starts at an
arbitrary polyhedron and ends at a polyhedron with its surface isometric to
the given one. This type of argument is called the continuity method ; it is
often used in the theory of differential equations.

The two parts of the first formulation will be proved separately.

Part 2. Let us show that the map ι : Φn→Ψn is injective; in other words,
a convex polyhedron is defined by the intrinsic metric on its surface up to a
motion of the space.

The last statement is analogous to the Cauchy theorem about polyhedrons,
and the proof goes along the same lines.

The Cauchy theorem states that facets of a polyhedron together with the
gluing rule completely describe a convex polyhedron; its proof is given in many
classical popular texts [1, 5, 7].

Part 1. Let us prove that ι : Φn→Ψn is surjective. This part of the proof
is subdivided into the following lemmas.
Lemma. For any integer n≥ 3, the space Ψn is connected.

The proof of this lemma is not complicated, but it requires ingenuity; it
can be done by the direct construction of a one-parameter family of metrics
in Ψn that connects two given metrics. Such a family can be obtained by a
sequential application of the following construction and its inverse.

Let M be a sphere with metric from Ψn. Suppose v and w are essential
vertices in M . Let us cut M along a shortest line from v to w. Note that the
shortest line cannot pass through an essential vertex of M . Further, note that
there is a three-parameter family of patches that can be used to patch the cut
so that the obtained metric remains in Ψn; in particular, the obtained metric
has exactly n essential vertices (after the patching, the vertices v and w may
become inessential).
Lemma. The map ι : Φn→Ψn is open, that is, it maps any open set in Φn to
an open set in Ψn.

In particular, for any n≥ 3, the image ι(Φn) is open in Ψn.
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This statement is very close to the so-called invariance of domain theorem;
the latter states that a continuous injective map between manifolds of the same
dimension is open.

According to part 2, ι is injective. The proof of the invariance of domain
theorem can be adapted to our case since both spaces Φn and Ψn are (3n− 6)-
dimensional and both look like manifolds, although, formally speaking, they
are not manifolds. In a more technical language, Φn and Ψn have the natural
structure of (3n− 6)-dimensional orbifolds, and the map ι respects the orbifold
structure.

We will only show that both spaces Φn and Ψn are (3n− 6)-dimensional.
Choose a polyhedron P in Φn. Note that P is uniquely determined by

the 3 · n coordinates of its n vertices. We can assume that the first vertex is
the origin, the second has two vanishing coordinates and the third has one
vanishing coordinate; therefore, all polyhedrons in Φn that lie sufficiently close
to P can be described by 3 · n− 6 parameters. If P has no symmetries then
this description can be made one-to-one; in this case, a neighborhood of P in
Φn is a (3 ·n− 6)-dimensional manifold. If P has a nontrivial symmetry group,
then this description is not one-to-one but it does not have an impact on the
dimension of Φn.

The case of polyhedral metrics is analogous. We need to construct a
subdivision of the sphere into plane triangles using only essential vertices. By
Euler’s formula, there are exactly 3 ·n− 6 edges in this subdivision. Note that
the lengths of edges completely describe the metric, and slight changes of these
lengths produce a metric with the same property.

Lemma. The map ι : Φn→Ψn is closed; that is, the image of a closed set in
Φn is closed in Ψn.

In particular, for any n≥ 3, the set ι(Φn) is closed in Ψn.

Choose a closed set Z in Φn. Denote by Z̄ the closure of Z in Φ; note
that Z = Φn ∩ Z̄. Assume P1, P2, · · · ∈ Z is a sequence of polyhedrons that
converges to a polyhedron P∞ ∈ Z̄. Note that ι(Pn) converges to ι(P∞) in Ψ.
In particular, ι(Z̄) is closed in Ψ.

Since ι(Φn)⊂Ψn for any n≥ 3, we have ι(Z) = ι(Z̄)∩Ψn; that is, ι(Z) is
closed in Ψn.

Summarizing, ι(Φn) is a nonempty closed and open set in Ψn, and Ψn

is connected for any n ≥ 3. Therefore, ι(Φn) = Ψn; that is, ι : Φn→ Ψn is
surjective.

Acknowledgments. We want to thank S. Alexander, Yu. Burago, and J. Tsuka-
hara for help.

Nina Lebedeva and Anton Petrunin
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Yuri Vladimirovich Linnik (1915––1972)

Yu. V. Linnik achieved exceptional results in two fields: the number
theory and the probability theory. In the number theory, he developed and
applied new and original methods, namely the large sieve and the ergodic and
variance methods. With the latter, he was able to solve the Hardy–Littlewood
conjecture — any natural number is the sum of one prime number and two

squares. Linnik derived a new and simple proof
to Vinogradov’s theorem that any sufficiently
large odd number can be written as a sum
of three prime numbers (Goldbach’s ternary
problem), and he proved the uniformity of dis-
tribution of integer points on a sphere.

His most important results in probability
theory and mathematical statistics are in large
deviations theory, decomposition of probabilis-
tic laws, characterization of distributions, and
statistical problems with an interfering param-
eter. In the mid-60s, Linnik and his collabora-
tors solved the famous Behrens–Fisher problem,
finding a counterexample to the conjecture be-
lieved to be true.

Yuri Vladimirovich Linnik was born in the
city of Bila Tserkva (now in Ukraine), to a fam-
ily of (at that time) teachers. In 1926, Linnik’s

family moved to Leningrad, where his father (an optical physicist who later
became a member of the Academy of Sciences of the Soviet Union) worked at
the State Optical Institute; Yuri worked there as a lab assistant after he finished
school. He went on to study at Leningrad State University in the Department
of Physics and Mathematics, studied there for three years, and then transferred
to the newly-established Department of Mathematics and Mechanics (because
he “felt an irresistible attraction towards higher arithmetic,” according to his
autobiography). By the time he graduated from university in 1938, he had
already published a paper.

In the winter of 1939, Yu.V. Linnik was drafted into the First Soviet-
Finnish War, where he served as commander of an artillery group until his
discharge in 1940. When he returned to Leningrad, Linnik wrote a thesis on
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the arithmetics of quadratic forms, for which he was given a Doctorate degree
(at the age of 25!), skipping the preceding Candidate’s degree. In July of 1941,
Linnik joined the People’s Militia and fought in WWII. However, during the
autumn of 1941 he was discharged due to muscular dystrophy and evacuated
to Kazan to work at the Steklov Institute. This most likely saved his life, as
the German Siege of Leningrad lasted 872 days, causing over half a million
people to die of starvation. In 1943, Yuri Vladimirovich derived an elementary
proof showing that any sufficiently large natural number can be written as a
sum of 7 cubes of natural numbers (Waring’s problem). In 1944, he returned
to Leningrad and combined his work at the Steklov Institute and Leningrad
State University, where he created the department of probability theory and
mathematical statistics in 1948.

When an administrative order forbade members of the Academy of Sciences
to hold side jobs at universities, Yuri Vladimirovich taught for free for two
years until this ridiculous decree was removed. Linnik divided his students
into two categories: some he gave specific problems to and closely monitored
their progress, while others he gathered mainly to talk about what he studied
and why. For example, he would send someone a telegram asking them to
call him back, then invite them to his house over the phone, and after quickly
preparing some food, would talk about his recent results for hours on end.

He was exceptionally hardworking, and his work was a source of happiness
for him. Once, after getting another remarkable result, he said: “yes, it’s a
difficult theorem, it took me three whole days and nights to prove.” He often
said that when starting a new field of study, “you have to choose a difficult, but
well-posed problem; while trying to solve it, new problems will emerge, and
they will serve as a testing ground for arising methods. This strategy gradually
leads to the creation of a theory and methods of a general nature.”

Once, he went to an academic conference in Riga, where he attended
lectures during the day and talked with his colleagues during the breaks and
evenings. At 11 o’clock one night, Yuri Vladimirovich called B.M. Bredikhin
and said: “I have a new idea.” Bredikhin came to his hotel room just as
someone else from the conference was leaving it. Bredikhin himself left the
room sometime between midnight and one in the morning, greeting Linnik’s
next guest on the way out.

Linnik started with the number theory but later worked in the probability
theory, as well. One of the reasons he went into the probability theory was a
piece of advice he received from A.Ya. Khinchin: “You always have to work in
at least two fields, so that when something isn’t working out in one field, you
can always switch to the other. For you, this extra field could be the probability
theory.” Both in the number theory and the probability theory, Yu. V. Linnik
was interested in hard analytical problems, which he solved with great success.
A quote from A. Weil’s book Basic Number Theory is appropriate here: “It
has been clear for a long time (since the fundamental works of Khinchin and
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The first page of Linnik’s article about Waring’s problem.

Kolmogorov), that the probability theory is applied analysis — in other words,
it is a calculus that can be applied to certain types of problems. The same can
be said about analytic number theory.”

Linnik was interested in military history, and collected wartime memoirs
and historical literature. His knowledge of the subject was quite broad, and
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because of his exceptionally good memory, he remembered the exact dates of a
great number of events. He was also a deputy in the Leningrad City Council,
although he was not a member of the Communist Party. He liked to travel
and met with many foreign colleagues.

Yu.V. Linnik and his collaborators wrote a series of papers on practical
applications of statistics and probability in the study of power systems,
gridding quality, and the gyroscope theory.

Yuri Vladimirovich was fluent in English, French (although still worse than
Russian, according to him), and German; he spoke Ukrainian, Polish, Serbian,
and Italian, loved reading books in foreign languages, and even wrote witty
poems in Russian, German and French. Linnik wrote the “axiomatic theory of
the Communist Party”, let us look at the first lines of it.

Axiom: From each according to his ability, to each according to his needs.
Existence theorem: Let us examine, for example, a graveyard. Both parts

of the axiom are clearly met.
In 1953 Linnik was elected corresponding member, and in 1964 became a

full member of the Academy of Sciences of the Soviet Union. He died of a
heart attack in June of 1972.

Nikita Kalinin
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Vladimir Abramovich Rokhlin (1919––1984)

Rokhlin’s main results belong to low-dimensional topology, the topology
of real algebraic varieties, and measure theory. In measure theory, Rokhlin
defined Lebesgue–Rokhlin probability spaces and developed a theory of their
measurable partitions. He also obtained significant results on entropy.

Rokhlin introduced cobordism groups and computed them in dimensions 3
and 4, he discovered the divisibility by 16 of the signature of closed spinor four-

dimensional manifolds, proved the combinato-
rial invariance of Pontryagin classes in a joint
paper with Albert Schwarz, and established
the additivity of signature in a joint paper with
Sergei Novikov.

Rokhlin applied the technique of algebraic
topology to the geometry of real algebraic vari-
eties, which allowed him to prove a congruence
relation for the Euler characteristic of maximal
real algebraic varieties.

Vladimir Abramovich Rokhlin was born in
Baku. His mother, Henrietta Emmanuilovna
Levinson, came from a wealthy Jewish fam-
ily, received a European medical education,
and worked as head of Baku’s sanitary and
epidemiological station. In 1923 she was mur-
dered there during the mass riots caused by

an epidemic. Her half-brother was the famous children’s writer Korney
Chukovsky.

Rokhlin’s father, Abram Veniaminovich Rokhlin, was an economist and
member of the RSDLP.1 He publicly opposed the Bolsheviks during the
revolution. In 1918 he was a food commissioner for the Revolutionary
Socialist––Menshevik government of the “Centrocaspian Dictatorship” 2 in Baku.

1 The Russian Social Democratic Labor Party, was founded in 1898; in 1903 it split
into Bolsheviks and so-called Revolutionary Mensheviks factions, with the former eventually
becoming the Communist Party of the Soviet Union.

2 A revolutionary socialist anti-Soviet administration that existed in Baku in July-
September 1918.
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He was later a glasny 3 at the Duma for the Democratic Party of the Turkish
Federalists, Musavat. He joined the All-Union Communist Party in 1920 but
was expelled during the purge in 1921. In 1930 Abram Rokhlin was exiled to
Kazakhstan, then returned to Baku, arrested in 1939, and executed in 1941.

In 1934, the fifteen-year-old Vladimir, skipping several years, graduated
with distinction from school in Alma-Ata, and in 1935, he was admitted to
the Department of Mechanics and Mathematics of Moscow State University.
He studied under the most distinguished mathematicians: Pavel Alexandrov,
Andrei Kolmogorov, Israel Gelfand, Lazar Lyusternik, Lev Pontryagin, and
Abraham Plessner.

All of them recommended Rokhlin for postgraduate studies. While still
a student, he published two scientific papers. In addition, in 1940, Rokhlin
wrote an extensive survey on homotopy groups and prepared detailed notes
of Plessner’s lectures on the spectral theory of operators in the Hilbert space.
These two reviews (the second in co-authorship with Plessner) were published
in Uspekhi Matematicheskikh Nauk, one of the leading mathematical journals
in the USSR, only in 1946, when Rokhlin was in a gulag camp, that is, he
did not take part in the preparation of the publication. Several generations of
mathematicians learned these subjects from these two papers.

Rokhlin’s thesis was about measurable partitions and became the beginning
of the series of his famous papers on the foundations of measure theory.

At the beginning of the war, in 1941, Vladimir Rokhlin was in his first
year of postgraduate study. He was sent to the militia, which immediately fell
into the so-called Vyazma pocket: a large group of troops (over half a million
men) was encircled and defeated near Vyazma. Wounded in both legs, Rokhlin
was left in the village in the care of the locals. His wounds were not healing,
and he was moved to a local hospital. When the territory was occupied by
the Germans, Rokhlin was arrested and sent to a P.O.W. (Prisoners of War)
camp. There, he contracted typhus, recovered, tried to escape several times,
and was moved to another camp in Belarus and then to Poland.

Rokhlin managed to conceal that he was a Jew. He said that one day a
specialist came to the camp who could identify Jews by the shape of their skulls.
The specialist told Rokhlin, with a sigh, that the Russians had such a variety
of skulls that he could not tell anything about anyone. Rokhlin had spoken
fluent German since childhood, and the guards chatted with him eagerly. The
retreating Germans dragged the POWs with them, but one day, the POWs
learned that the next day, the Germans would withdraw and continue to retreat
while the POWs would be shot. Their barrack was guarded by one soldier; the
POWs killed him and left to meet the Red Army.

The war had already moved to Germany, and the Soviet army needed
interpreters who knew German, which is where Rokhlin’s German came in

3 In the Russian Empire, a member of a meeting, e.g., local or regional assembly, with a
casting vote.
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handy. On the last day of the war, Rokhlin and other former prisoners of war
were loaded into teplushkas 4 and taken under escort to Komi for clearance.
They were interrogated in order to find out whether they had collaborated
with the Germans during their captivity. The logic of the Soviet authorities
was to send them to a lumber camp: if they worked hard and fulfilled their
quotas, they were “our people,” but if they did not do their job (or just died),
then they were traitors and should be punished. The convoy was told that
their wards were Vlasovtsy 5 and treated them accordingly.

To the People’s Commissar of Internal Affairs of the USSR
Comrade Kruglov

from laureates of the Stalin Prize
Academician A.N. Kolmogorov

and L.S. Pontryagin, Corr. Member of the USSR Academy of Sciences

We hereby request your attention to the fate of Vladimir Abramovich Rokhlin,
who returned from a German prison camp and is now living in Komi. [...] we
believe that in the interests of the development of Soviet mathematics it would
be highly desirable to give V. A. Rokhlin the opportunity to get back to his
postgraduate studies in the near future to continue his scientific work under
our supervision.

13 February 1946.

To the Director of the Institute of Mathematics
Professor V.V. Stepanov

In accordance with your letter of 5/09 1946, regarding the return of Vladimir
Abramovich Rokhlin to the Moscow University the GULAG of the Ministry of
Internal Affairs of the USSR has instructed me to dismiss V.A. Rokhlin from
the guard and to transfer him to your custody.

Head of the Security and Regime Department of the Gulag
of the USSR Ministry of Internal Affairs

Colonel I. Smirnov.

December 4, 1946.

Rokhlin later recounted that during the clearance process he claimed that
he did not remember anyone from the German camps because he had been
seriously wounded. It guaranteed that his testimony would not contradict
anyone else’s, and he would not incriminate anyone. At the time, most Moscow
mathematicians were convinced that Rokhlin had died during the war, but he

4 Teplushka is a heated goods wagon, widely used for transporting troops and prisoners
at the time.

5 Common name for the soldiers of the Russian Liberation Army that was led by general
Andrey Vlasov, fought under German command during World War II, and was primarily
composed of Russians.
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managed to send a word of himself. Andrei Kolmogorov and Lev Pontryagin
wrote a letter to the head of the NKVD asking him to release Rokhlin. By
the time this letter reached the addressee Rokhlin had already been cleared of
charges and had been assigned to serve in the guard as was often the case.

Through the war and the camps, Rokhlin carried the notebook in which he
wrote down his ideas and plans, and within a year and a half of passing the
clearance he had defended both his dissertations (Ph.D. and Higher Doctorate).
Lev Pontryagin was blind, and he used this to argue for employing Rokhlin at
the Steklov Mathematical Institute in Moscow as his assistant and secretary.
This is where Rokhlin worked until he completed his doctoral thesis.

While editing Pontryagin’s papers on topology, Rokhlin took an interest in
the computation of homotopy groups of spheres by the geometrical method
(the invariant-free method, as Pontryagin called it) and computed the third
stable homotopy group of spheres. This was followed by other profound
results in algebraic topology, which are described in [1] and the accompanying
mathematical paper.

During this period (1940––50), Andrei Kolmogorov, Lev Pontryagin, Israel
Gelfand, and Abraham Plessner wrote rave reviews of Rokhlin’s dissertation,
his articles, and his teaching activities. However, the beginning of the 1950s in
the Soviet Union was marked by an anti-Semitic campaign, and after defending
his doctoral thesis Rokhlin could not stay at the Steklov Institute (he was told
that they could not keep him there even if he had computed all the homotopy
groups of all spheres).

So, Vladimir Rokhlin had to leave Moscow with his family. They moved to
Arkhangelsk, then to Ivanovo, then to Kolomna (which is not far from Moscow,
so it became possible to participate in seminars occasionally), where Rokhlin
was a professor of mathematics at a pedagogical and technical institute with
a significant teaching load.

Rokhlin greatly contributed to the notion of Kolmogorov entropy, first by
showing that Kolmogorov’s definition is not complete in general case, and then,
together with Yakov Sinai, by developing the theory of K-automorphisms.

Rokhlin was a bright figure in the mathematical community then, and
his influence on many young mathematicians (Sergei Novikov, Yakov Sinai,
Vladimir Arnold, etc.) was great. But it was not until 1960 that Rokhlin got
a job befitting his standing when the rector of Leningrad State University, the
geometer A.D. Alexandrov, invited him to Leningrad.

From 1960 to 1982 Rokhlin was a professor at Leningrad University. He
immediately became one of the informal leaders of Leningrad mathematicians.
In particular, as soon as he arrived, he organized topological and ergodic sem-
inars attracting the best students, many of whom later became distinguished
scientists.

He was also involved in modernizing the curriculum of the Faculty of Math-
ematics and Mechanics and introduced a compulsory course in topology, the
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A letter from Vladimir Rokhlin to Dmitry Gudkov, 2 May 1972, [5]. Rokhlin writes
about diploma theses of his student V. Kharlamov, new Gudkov-type conjugacy
results, and mentions his new proof of p− n≡ k2 (mod 8) not using special facts
about 4-manifolds. Rokhlin and Fuchs plan to finish their topology textbook before
autumn.

first in the country and probably in the world. Generation after generation of
his postgraduate students led students’ self-study clubs. Rokhlin’s topological
seminar was, for a long time, one of the leading mathematical seminars in the
USSR, on par with those led by Arnold, Gelfand, and others.

He was an excellent lecturer and generously shared new ideas and whole
scientific areas with his students. He was always elegant, amiable and polite,
punctual, ironic, and witty.

He had a complicated and tragic life. His friends and students remember
him for his strong moral principles, profound theorems, and for the fact that a
whole generation of strong mathematicians, the Leningrad school of topology,
was tutored by him.

Nikita Kalinin
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Rokhlin’s signature theorems

The scope of Rokhlin’s mathematics. Rokhlin’s mathematical heritage in-
cludes a number of outstanding contributions to various fields: measure and
ergodic theories, topology, and real algebraic geometry. He used to change
the focus of his research interests in average once in five years. In each of the
periods, he managed to obtain fundamental results and then turned to a new
field, being attracted by a challenging problem.

Rokhlin started in the measure and ergodic theories. The results of his PhD
were presented in his paper On the fundamental concepts of measure theory.
The second (doctoral) dissertation defended soon after his PhD was called
On the most important metric classes of dynamical systems. The first ergodic
theory period finished in 1950. In the late fifties, Rokhlin came back to ergodic
theory in his research related to entropy of dynamical systems. In the first half
of the fifties, the period of topology followed.

A good challenge. When Rokhlin turned to topology, his initial challenge
was to find the third stable homotopy group of spheres, that is πn+3(Sn)
with n≥ 5. Prior to that Pontryagin found the groups πn+2(Sn) with n≥ 2
and πn+1(Sn) with n≥ 3 by his method, which bridges the homotopy theory
and differential topology. Technically, Pontryagin’s calculation was a study
of curves and surfaces embedded in Euclidean space with trivialized normal
bundles. It relied on a comparatively simple topology of curves and surfaces.
A topology of 3- and 4-dimensional smooth manifolds that was needed for a
similar calculation of πn+3(Sn) had not yet been developed.

Groundbreaking results. In a striking tour de force, Rokhlin developed a
technique, which allowed him to prove that πn+3(Sn) = Z/24 for n≥ 5, and
found himself in a new research area, where he could make groundbreaking
discoveries. Below we overview the results published by Rokhlin in the notes
of 1951––52, where he calculated πn+3(Sn). The results grew out of calculations
of cobordism groups Ω3 and Ω4. (Cobordisms and the cobordism groups Ωn

and Nn were introduced by Rokhlin in the same notes.)

• Any oriented closed smooth 3-manifold bounds a compact oriented 4-
manifold. (In other words, Ω3 = 0.)

Rokhlin introduced the signature σ(M) of an oriented closed 4n-
manifold M . The signature σ(M) is the difference between the numbers of
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positive and negative coefficients in a diagonalization of the intersection form
H2n(M ; R)×H2n(M ; R)→R ofM . By discovering the properties of signature
stated below Rokhlin turned it into one of the central invariants in topology
of manifolds.
• The signature of an oriented smooth closed 4n-manifold vanishes if the

manifold bounds an oriented smooth compact (4n + 1)-manifold. (In other
words, the signature defines a homomorphism Ω4n→Z.)

• An oriented smooth closed 4-manifold M bounds a compact oriented 5-
manifold if and only if σ(M) = 0. In general, an oriented smooth closed M is
cobordant to the disjoint sum of σ(M) copies of the complex projective plane.
(In other words, Ω4 =Z.)

• The signature of an oriented smooth closed 4-manifoldM equals one third
of the Pontryagin number p1(M)[M ].

• The signature of an oriented smooth closed 4-manifoldM with w2(M) = 0
is divisible by 16.

Most of these achievements are often attributed to other authors, who
discovered these things later. However, the last item in this list stands apart.
It is commonly referred to as the Rokhlin Theorem and considered Rokhlin’s
most famous result. Many times it played a substantial rôle in the subsequent
development of topology. Below we concentrate on a few of them that seem
the most important.

Reformulations of the Rokhlin Theorem. To a non-specialist, the Rokhlin
theorem sounds a bit cryptic and technical. Let us take a closer look. The
theorem establishes a relation between two basic characteristics of an oriented
smooth closed 4-manifold M : its second Stiefel–Whitney class w2(M) and the
signature σ(M). It claims that if w2(M) = 0, then σ(M)≡ 0 mod 16.

What does the assumption w2(M) = 0 mean? The Stiefel–Whitney classes
wk(M) ∈Hk(M ; Z/2) measure complexity of the tangent bundle TM . Ori-
entability ofM means w1(M) = 0. For an orientable smooth closed 4-manifold
M , w2(M) is the only obstruction for M being almost parallelizable, that is
admitting 4 tangent vector fields linear independent at all points but one. With
this in mind we can reformulate the Rokhlin Theorem as follows:
• The signature of an almost parallelizable smooth closed 4-manifold is

divisible by 16.
A smooth closed manifold M admits a Spin-structure iff w1(M) = 0 and

w2(M) = 0. Thus we can reformulate the Rokhlin Theorem as follows:
• The signature of a smooth closed Spin 4-manifold is divisible by 16.
For an orientable smooth closed 4-manifold M the assumption w2(M) = 0

holds true iff the Z/2 intersection form H2(M ; Z/2)×H2(M ; Z/2)→Z/2 is even,
that is the self-intersection number of any closed surface in M is even. This
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interpretation does not depend on the smooth structure or tangent bundle
of M . Thus we get one more reformulation:

• If an oriented smooth closed 4-manifold M has even Z/2 intersection
form, then σ(M)≡ 0 mod 16.

Causes for divisibility: Topology versus Algebra. Divisibility of some integer
by 16 looks quite mysterious. Sixteen is a large non-prime number. As we will
see, a half of divisibility of the signature by 16, that is divisibility by 8, can be
extracted by purely algebraic arguments from simple topological facts, which
are not specific for smooth 4-manifolds. On the contrary, the last factor 2 in 16
manifests a crucial obstruction for a topological manifold to admit a smooth
structure.

Due to Poincaré duality, the intersection form H2(M)×H2(M)→ Z of a
closed oriented 4-manifold M is a symmetric integral unimodular form. If
w2(M) = 0, then this form is even, because its reduction modulo 2 is a part
of the Z/2 intersection form, which is even as w2(M) = 0. The signature of an
even symmetric integral unimodular form is divisible by 8. This is a purely
algebraic fact.

The Rokhlin Theorem claims that σ(M) is divisible not only by 8, as the
algebra ensures, but by 16. So, it imposes a restriction on a symmetric even
unimodular form realizable as the intersection form of an oriented smooth
closed 4-manifold M with w2(M) = 0. Namely, the signature of a realizable
form cannot be congruent to 8 mod 16. For example, the form E8 (a famous
even unimodular integral form of rank and signature 8) is prohibited.

Obstructions to Diff or PL on a 4-manifold. In Rokhlin’s theorem, the
assumption that M is smooth is necessary: as Freedman proved in 1982, there
exists an oriented closed topological simply-connected 4-manifold with any
unimodular intersection form. If the form is even and its signature is not
divisible by 16 (say, if this is E8) then by the Rokhlin Theorem the manifold
does not admit a smooth structure. In lower dimensions this does not happen:
any n-manifold with n< 4 admits a smooth structure.

In dimension four, smoothability is equivalent to existence of a piecewise
linear structure (PL-structure). Thus the Rokhlin theorem provides an ob-
struction to existence of a PL-structure.

The key to PL in high dimensions. In the eighties Donaldson discovered other
numerous obstructions to existence of PL or smooth structure on 4-manifolds.
However, they are less robust. The Rokhlin Theorem is formulated in terms
invariant under cobordisms and gives rise to high-dimensional results, while
the other obstructions do not.

For example, if M is a simply-connected closed 4-manifold with signature
non-divisible by 16 (and does not admit a PL-structure by the Rokhlin
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Theorem), then M × (S1)n does not admit a PL-structure for any n> 0. This
can be deduced from the Rokhlin Theorem.

Complete obstructions to existence or equivalence of PL-structures on
manifolds of dimension ≥ 5 (discovered by Kirby and Siebenmann in the
seventies) rely on the Rokhlin Theorem.

More about the Rokhlin Theorem. Due to the space restrictions, our story
is very incomplete. We said nothing about numerous generalizations of the
Rokhlin Theorem, their applications, proofs, misconceptions, etc. You can
find all of this in a note by S. Finashin and V. Kharlamov, A glimpse into
Rokhlin’s Signature Divisibility Theorem. arXiv:2012.06389.

See also a book by L. Guillou and A. Marin A la Recherche de la Topologie
Perdue. I Du côté de chez Rohlin. II Le côté de Casson.

Sergey Finashin, Viatcheslav Kharlamov, Oleg Viro



Victor Abramovich Zalgaller (1920––2020)

Victor Abramovich Zalgaller was a person with a dramatic but, in the end,
happy life. A front-line signalman who traveled throughout the entire war
from Leningrad to Rügen, a bright mathematician of Alexandrov’s school, an
author of not only theoretical but also applied papers, an excellent teacher,
one of the founders of a specialized physical-mathematical school № 239 in

Leningrad, Zalgaller was a character of excep-
tional morality and integrity. His life is closely
tied to the Department of Mathematics and
Mechanics of Leningrad State University (now
St. Petersburg State University).

In geometry, the main focuses of Zalgaller’s
research were the theory of convex bodies, the
theory of convex surfaces, the intrinsic geom-
etry of irregular surfaces, polyhedra, and op-
timization problems. Equally important was
his research on applied problems, primarily the
method behind the optimal cutting of materi-
als.

Victor Abramovich was born on December
25, 1920, in the vicinity of Novgorod. His
father, A.L. Zalgaller, was an engineer and

his mother, Tatyana Markovna Shabad–Zalgaller, was a lawyer. Tatyana
Markovna’s oratory skills played a notable role — she taught her son how
to speak eloquently, a skill that Victor Abramovich later used to become a
legendary lecturer at Leningrad’s math department.

Once in 1983, he was asked to give a lecture on teaching methods in mathe-
matics (just a regular lecture on his class schedule). The large auditorium in the
Petergof building of the math department was filled with undergraduate and
postgraduate students as well as professors. The diverse audience benefitted
Victor Abramovich, for he was simultaneously saying and showing “how to do
it properly.” “To make the audience lighten up a little,” he said,

tell a funny joke or anecdote in the middle of the lecture. The bigger
the audience is, the wittier the joke should be. In a small auditorium,
a sarcastic smile is enough.
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The room exploded with loud applause after the lecture, and Victor
Abramovich bowed happily.

Victor Abramovich’s life was not easy — he belonged to a generation that
almost perished during the war. Shortly after the start of the German invasion
of the USSR he joined the volunteer corps
and was almost immediately sent to the front
lines. He was a signalman throughout most
of the war. His journey as an active duty
soldier was also difficult: the Leningrad de-
fense, the Oranienbaum Bridgehead, an injury
during the lifting of the Leningrad blockade,
the storming of Vyborg, battles in the Baltic
states, the storming of Danzig, and the arrival
to the Elbe, among others. Victor Abramovich
was awarded the Order of the Red Star, a
medal “for courage,” three medals “for battle
merit,” a medal “for the defense of Leningrad,”
and more. He ended the war as a Senior
Sergeant. His older brother, Lieutenant Leonid
Zalgaller, died in 1942 when beseiged near
Myasnoy Bor. Victor Abramovich left a re-
markable wartime memoir called Life in War, from which the following quote
takes the reader back to those days:

...we’re carrying Boris on a stretcher. One can see his heart beating
through his wound. We cover it with some cotton wadding. We reached
an open field. Not a soul to be seen. It’s hot. Two people carry the
stretcher, one rests, then we switch. A German airplane passed us
three times, trying to shoot the long shadow that the stretcher drops
on the sunny road. “It’s hard for you to carry me, I’ll sing.” And
so he sings: “Arms, like two large and warm birds, how you flew, how
you lit up everything around you...” His voice disappears when he loses
consciousness, then reappears again. “Arms, how easily you could wrap
yourself around me...”

After the war, Victor Abramovich returned to his university studies, which
he finished with honors in 1948. That same year, he applied to the Steklov
Institute, where he worked for over 50 years.

Victor Abramovich was an outstanding teacher with an unusual ability to
clearly demonstrate the most difficult ideas. He also stood out because of his
friendliness towards students and young people in general. He started teaching
for a mathematical circle that met in the Pioneers’ Palace.

“I had some good kids,” remembered Victor Abramovich, “Yura Reshetnyak,
Garald Natanson, Misha Solomyak — they were all in my circle.” (All three
later became well-known mathematicians.) Victor Abramovich continued to
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enjoy working with school and university students. He was one of the organizers
and teachers at the specialized mathematical school School No. 239, where he
developed the school’s first curriculum.

In his monograph, Convex Polyhedra with Regular Faces, Zalgaller thanks
twelve students from the 239th School who helped him with calculations. It is
rare for high school students to be mentioned in serious scientific work.

The story of this problem is as follows: Any mathematician who knows
about the five platonic solids has thought of the following question: what
(convex) polyhedra are there with all regular faces, but not necessarily the
same ones? This question is a lot harder than it appears at first glance, and its
solution is accredited to Victor Abramovich: there are exactly 28 simple (i.e.,
not composed of two other ones) regular-faced polyhedra, except for prisms or
antiprisms. Victor Abramovich decided to engage the students in solving this
problem.

Boris Belinsky, one of the participants in this project, remembered those
days:

It was like listening to a fairy tale, that’s how clearly he explained
everything. I remember one of his examples about how to tie a dog so
that it protects exactly half of a circle. Later I learned that this was
part of a serious geometric problem. And then Victor Abramovich
started a project describing regular-faced polyhedra [a.k.a. Johnson
solids], which I was more than happy to participate in. That’s when
we realized that it’s one thing to get a good grade for something
your teacher taught you, and quite a different thing entirely to try
to do something that has never been done before. First a paper
was published, and then a book, where our names were written in
parentheses after certain lemmas. Everyone here knows that feeling
when you see your name printed for the first time.

Victor Abramovich’s first papers were written under the influence of his
teacher, Alexander Danilovich Alexandrov. Zalgaller came to Alexandrov’s
school during its golden age. We cannot grasp the full scope of Victor
Abramovich’s scientific legacy with one story, nor can we describe all of his
main achievements. Therefore, we will focus on two of his works, which are so
accessible that even a non-specialist would understand their formulation.

One of Zalgaller’s (and Yu.D. Burago’s) results, inspired by J. Nash’s
theorems, is as follows: every 2-manifold with a polyhedral metric admits
piecewise linear isometric immersion into 3-dimensional Euclidean space. To
simplify further, one can say that if you have a collection of paper triangles
(non-stretchable and non-compressible) that you can glue together to create the
surface of a sphere with handles and cross-caps, then these glued triangles can
be realized in a 3-dimensional space, if you allow the triangles to be fanfolded,
and allow self-intersections of the obtained surface.
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To prove this, Zalgaller needed the following nontrivial result: every polygon
M can be cut into acute triangles that are adjacent to each other by whole
sides. (A good exercise for the reader: try to cut an obtuse triangle into acute
ones.) The idea of the construction is that at first, the faces of a 2-manifold
were divided into acute triangles, but possibly not adjacent to triangles on
another face along a whole side. Then, the divisions were subdivided (refined)
even more, and the correct triangulation appeared from slight shifts of vertices
of the finer subdivision along the edges of the original division. Surprisingly, he
made use of the famous theorem about the simultaneous good approximation
of a number set by a collection of rational numbers with a common (arbitrarily
large) denominator.

Zalgaller with his grandson, 1979.

Let us mention another one of V.A. Zalgaller’s great achievements, which he
obtained when he was in Israel at the age of 80. Together with A.Yu. Solynin,
he proved an old conjecture of Pólya and Szegö: the logarithmic capacity of
a flat n-sided polygon with a given area attains its minimum at a regular
polygon. Their proof is beautiful and not simple. It consists of two parts: a
geometric one and an analytical one, the first of which which belongs to Victor
Abramovich. A special triangulation of an n-sided polygon was needed here: a
polygon is covered by triangles with non-overlapping neighboring sectors such
that the ratio of αk to the area of Tk does not depend on k, where αk is the
angle of the triangle Tk opposite to the side Ak+1 of the polygon. As Victor
Abramovich told his colleagues, he was constantly thinking about this problem
over the course of a whole year, and in the end the solution came to him in
a dream. The proof of this conjecture became one of the best gifts he gave
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himself for his 80th birthday. In 2004, this result was published in one of the
most prestigious journals, Annals of Mathematics.

V.A. Zalgaller was the author of a few books that ended up in the hall of
fame of mathematical literature. Some of his most famous books that are loved
by geometers are the following:
• Yu.D. Burago, V.A. Zalgaller, Geometric Inequalities — a real encyclope-

dia, dedicated to various inequalities for subsets of Euclidean and Riemannian
spaces, a handbook for geometry lecturers at mathematics departments.
• Yu.D. Burago, V.A. Zalgaller, Introduction to Riemannian Geometry —

the only textbook on Riemannian geometry in Russian where the subject is
presented from the point of view of ‘Riemannian geometry at large’ while still
acting as a good introduction to the subject.

Colleagues, students, friends, and people close to him remember Victor
Abramovich Zalgaller as a wonderful and multifaceted scientist with a compli-
cated biography, and at the same time as an extremely kind person with a soft
and charming smile.

Gaiane Panina



Olga Alexandrovna Ladyzhenskaya (1922––2004)

O.A. Ladyzhenskaya was born on March 7, 1922, in the town of Kologriv
(now Kostroma region). Her skills in mathematics were noticeable from a
young age. In 1937, her father, a math teacher and former military officer, was
executed as an “enemy of the people.” Because of this, Olga Alexandrovna was
not accepted to Leningrad State University in 1939, despite her brilliant exam
results. She could only attend the Pokrovsky
Leningrad State Pedagogical Institute. When
the Great Patriotic War1 started, Olga Alexan-
drovna returned to Kologriv where she taught
math at a school.

In 1943, Ladyzhenskaya enrolled at Moscow
State University as a second-year student. Af-
ter graduating with honors in 1947, with I.G.
Petrovsky as her advisor, she got married and
moved to Leningrad, where she became a post-
graduate student at Leningrad State University
(LSU), with S.L. Sobolev acting as her advisor.
In 1949, she got her Candidate’s degree,2 and
in 1953 — her Doctorate degree.3 In 1950 she
became an Assistant Professor at the Physics
Faculty of LSU (and in 1955 — a Full Professor).
Since 1954, she was a Fellow of the Leningrad
Department of the Steklov Institute (LOMI). In 1961 O.A. organized the
Laboratory of Mathematical Physics at LOMI; she headed this Laboratory
until 1998. From 1999 onwards, she was a Principal Researcher at the Steklov
Institute. She became a Corresponding Member of the Academy of Sciences
of the Soviet Union in 1981, and a Full Member in 1990.

O.A. Ladyzhenskaya wrote over 250 works, including 7 monographs and 1
textbook. Her achievements were recognized with the bestowal of numerous
prestigious awards, including the highest award of the Russian Academy of

1 The Great Patriotic War (1941––1945) is a term used in Russia and former Soviet
Republics to describe the war between the Soviet Union and Nazi Germany during World
War II.

2 The Candidate’s degree is roughly equivalent to a PhD.
3 The Doctorate degree is roughly equivalent to Habilitation.
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Science — the Lomonosov Gold Medal. She was elected as a foreign member of
the German National Academy of Sciences Leopoldina (1985), the Academia
Nazionale dei Lincei (1989), and the American Academy of Arts and Sciences
(2001), and as an honorary doctor at the University of Bonn (2002). In
2020, the National Committee of Mathematicians of Russia, St. Petersburg
University, and the Organizing Committee of the International Congress of
Mathematicians established a special medal in honor of O.A. Ladyzhenskaya.

Associated with her name are results in spectral theory of elliptic operators,
diffraction theory, and a justification of convergence of the Fourier method for
hyperbolic equations. During the ‘60s, Olga Alexandrovna and her student,
N.N. Uraltseva, wrote a series of papers about the regularity of solutions to
quasilinear elliptic and parabolic partial differential equations. In fact, these
works contained the solutions to the 19th and 20th Hilbert problems.

In the second half of the 20th century, Ladyzhenskaya was a “trendsetter” in
the theory of partial differential equations, a real mathematical strategist. It is
important to note that she was more interested in creating new problems than
solving existing ones. It is thanks to Ladyzhenskaya that we have concepts
such as generalized settings and generalized solutions.

Ladyzhenskaya’s contribution to mathematical fluid dynamics is funda-
mental. She was the first to prove uniqueness in the flow problem for the
2-dimensional Navier–Stokes system. And together with A.A. Kiselev, she
established several theorems on the solvability of the 3-dimensional system.
Olga Alexandrovna introduced the concept of the attractor for 2-dimensional
Navier–Stokes systems, and proved its existence. This result became the basis
of the general theory of global stability for evolutionary partial differential
equations.

For many years, Olga Alexandrovna taught advanced courses for students
in two faculties (Mathematics and Mechanics, and Physics) simultaneously.
Her charm, her ability to recognize capable students, and her readiness to help
beginners out allowed her to foster brilliant scientists, such as L.D. Faddeev,
N.N. Uraltseva, V.A. Solonnikov, V.S. Buslaev and others, whose names make
up the glory of the St. Petersburg school of partial differential equations and
mathematical physics.

Ever since V.I. Smirnov organized the City Seminar of Mathematical
Physics in 1947, Olga Alexandrovna actively participated in it, and later
became its leader for many years. Almost all experts in partial differential
equations and their applications who studied in Leningrad (now St. Petersburg)
participated in that seminar. The chance to give a talk in front of Olga
Alexandrovna was considered an honor for mathematicians across the Soviet
Union. Distinguished foreign mathematicians gave lectures at her seminar as
well, including R. Courant, J. Leray, P. Lax, and others.

Since the revival of the St. Petersburg Mathematical Society in 1959, O.A.
Ladyzhenskaya became one of its most active members. For over 40 years she
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served as a board member and vice president, and from 1990 to 1998 she was
the President of the Society. In 1998 she was elected as an Honorary Member
of the St. Petersburg Mathematical Society.

Despite her high status, Olga Alexandrovna was always very respectful to
everyone and was interested in what they said. You could argue and disagree
with her, but she would not force her opinions on you and was not afraid to
overlook her own point of view.

This portrait of Olga Alexandrovna stood on A.D. Alexandrov’s desk.

Olga Alexandrovna was deeply religious, but never let it show. Her behavior
around people was not defined by the phrase “for God’s sake” but “for people’s
sake.” She was loyal to the slogan “Who, if not me?”, and was always willing to
help those around her, reaching out before they did. Her help appeared in many
forms: money, clothes, a place to live, organizing shifts for someone who needed
24-hour care, taking care of administrative hassles, etc. She consistently stood
up for students who were subjected to discrimination for political reasons when
applying to postgraduate school. During the ‘90s, a terrible decade of economic
hardship in Russia, Olga Alexandrovna walked around with her pockets full of
change and gave it out to the poor.

Olga Alexandrovna was a unique and many-sided person. She was inter-
ested in almost everything in the world: she was well-versed in literature, art,
and music. Famous poets, authors and musicians valued their interactions
with her; among them were J. Brodsky, A. Solzhenitsyn, and B. Tishchenko.
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Solzhenitsyn added Ladyzhenskaya to the list of 257 “witnesses of The Gulag
Archipelago.” 4

O.A. Ladyzhenskaya and A.A. Akhmatova, early 1960s.

Ladyzhenskaya’s friendship with Anna Akhmatova, the great Russian poet,
should be considered separately. Despite their big age difference, they were very
close: Olga Alexandrovna was one of the 11 people whom Akhmatova entrusted
to read her manuscripts “Poem without a Hero” and “Requiem”, which were not
allowed for publication at that time. Moreover, Olga Alexandrovna convinced
Anna Andreevna to make a tape recording of “Requiem” (Ladyzhenskaya kept
it hidden for 20 years). It is important to note that if the KGB (the Soviet
political police) had found that recording in Olga Alexandrovna’s possession,
it would have put her professional career in serious jeopardy. Today, thanks to
Ladyzhenskaya, we can listen to the author performing the timeless words of
Requiem. A well-known poem In Vyborg by Akhmatova is dedicated to Olga
Alexandrovna.

Everyone who knew Olga Alexandrovna remembered her relentlessness — in
mathematics as well as during excursions and tourist trips. It was only natural
for her to spend a couple of hours questioning a lecturer on the details of a
proof. With the same level of ease, she could visit 4 different art galleries in
one day (and this was at an advanced age too!) during a trip overseas. There
were even legends about her tendency to “get lost” in the mountains.

4 The Gulag Archipelago is a three-volume non-fiction text by Alexander Solzhenitsyn.
It was first published in 1973, and translated into English and French the following year.
It covers life in what is often known as the Gulag, the Soviet forced labor camp system.
The “Witnesses of the Archipelago” is the list of 257 names of those whose stories, letters,
memoirs, and corrections were used in the making of the book.
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Finally, it is impossible not to mention that Olga Alexandrovna was a very
beautiful woman. In a congratulatory letter composed for her 60th birthday,
Alexander Danilovich Alexandrov wrote: “To have so much beauty and talent
in one person would seem impossible, if it wasn’t for Olga Alexandrovna.”
After visiting Leningrad, the French mathematician Jean Leray said that he
“saw the Hermitage Museum, the Peterhof Palace, and Ladyzhenskaya.”

Darya Apushkinskaya and Alexander Nazarov
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O.A. Ladyzhenskaya and the problem of
the global unique solvability of the
Navier–Stokes equations

One of the most important models in mathematical hydrodynamics is the
following Navier–Stokes system of equations in R3× (0, +∞):{

∂u
∂t
− ν∆u+ (u · ∇)u+∇p = 0;

div u = 0,
(1)

which describes the flow of a viscous incompressible fluid. The variables in
system (1) are the vector field u and the scalar function p, they play the role of
the fluid velocities field and pressure, respectively. One of the central questions
regarding this system is whether the given model provides a deterministic
description of fluid dynamics, in other words, if the definition of the initial
data

u|t=0 = u0 (2)

uniquely determines the solution of system (1) for all t.
To answer these and similar questions in the 20th century, the theory of

partial differential equations began to develop new approaches based on the
methods of functional analysis. Among the scientists who contributed to
the development of new ideas, one can name N.M. Günther, S.L. Sobolev,
J. Leray, R. Courant, K. Friedrichs, and many others. In particular, using the
concept of weak derivatives introduced by S.L. Sobolev, J. Leray [14] proved
the global existence of weak solutions, later called the Leray–Hopf solutions,
and established the existence of strong solutions on a finite time interval. By
now, the uniqueness of the Leray–Hopf solutions is an open problem. On the
other hand, the strong solutions are unique in the class of Leray–Hopf solutions,
but their global existence is unknown. This was the situation in the theory
of the Navier–Stokes equations by the time when O. A. Ladyzhenskaya joined
the research in this area.

In 1957, the paper On the existence and uniqueness of the solution of the
nonstationary problem for a viscous, incompressible fluid was published; see
[3]. It can be said that already in this work Olga Alexandrovna’s position
was determined, which she adhered to in her studies of the Navier–Stokes
equations throughout her life. Olga Alexandrovna always considered the
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primary question of the uniqueness of solutions (and not of their regularity)
for nonstationary problems, and considered the formulation of a problem to
be “correct” if the question was to find functional classes in which it would be
possible to prove simultaneously both the global existence of solutions and their
uniqueness. While for the Navier–Stokes equations the uniqueness problem for
solutions is closely related to the question of their regularity (for the Navier–
Stokes system, the following “weak-strong” uniqueness theorem holds: the
existence of a smooth solution implies that any weak solution, the Leray–Hopf
solution, must coincide with it), Olga Alexandrovna admits that the solutions
of equations describing the dynamics of viscous fluids in principle can form
singularities over time, but despite this, should be described mathematically
by models that give a deterministic description of such flows.

In [3], different variants of functional classes are presented, in which the
theorem of uniqueness of solutions to initial-boundary value problems for
equations (1) is valid; the existence of solutions in these classes on a finite time
interval is proved, with a lower bound for the lengths of the corresponding
intervals. Olga Alexandrovna adhered to the philosophy of this work all her
life — to look for functional classes in which the global unique solvability holds.
She believed that the class of Leray–Hopf solutions is unacceptably large and
there is no uniqueness in it. This problem is still open, but the paper [2] partly
confirms the conjecture.

In 1958, O.A. Ladyzhenskaya [4, 5] proved the global unique solvability of
the initial-boundary value problem for the following two-dimensional Navier–
Stokes equations in QT := Ω× (0, T ):

∂u
∂t
− ν∆u+ (u · ∇)u+∇p = 0;

div u = 0;

u|t=0 = u0, u|∂Ω×(0,T ) = 0,

where Ω is an arbitrary domain in R2. This generalizes the results of
J. Leray [15] for the two-dimensional Cauchy problem. In contrast to J. Leray,
she uses her concept of choosing the correct functional class. Her proof is based
on the following interpolation inequality:

‖u‖4L4(R2) ≤ 2 ‖u‖2L2(R2)‖∇u‖2L2(R2),

which is currently called the Ladyzhenskaya inequality.
Later, Olga Alexandrovna continued to search for cases such that the global

unique solvability of the Navier–Stokes equations takes place. In 1961, the
first edition of her book The Dynamics of a Viscous Incompressible Fluid was
published (see [6]). This book, translated into English in 1963, became the
basic textbook on the mathematical theory of the Navier–Stokes equations for
many generations of mathematicians around the world for many years. In
1968, the paper [9] was published, in which the global unique solvability of
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the Cauchy problem for the Navier–Stokes equations for axisymmetric initial
data without the angular velocity component was proved (similar results were
obtained in [18], also published in 1968). In [8], O.A. proves that the uniqueness
theorem for the three-dimensional Navier–Stokes equations holds in the class
of weak solutions with the following norm:

T∫
0

‖u(·, t)‖lLs(Ω) dt < +∞, 3
s

+ 2
l
≤ 1, s ∈ (3, +∞], l ∈ [2, +∞].

(3)

Observe that the class (3) was earlier considered in [16] and [17]. In the same
paper, O.A. also proves the smoothness of the solutions satisfying condition
(3). For the axisymmetric Navier–Stokes equations without the angular
velocity component, O.A. [10] constructs an example of non-uniqueness of
weak solutions with a finite energy norm. In the constructed counterexample,
an initial-boundary value problem is considered in the axisymmetric domain
QT defined in cylindrical coordinates (r, ϕ, z) by

QT := { t ∈ (0, T ), r, z ∈ (a
√
t, b
√
t) }, 0 < a < b.

The non-unique solutions constructed by O.A. belong to the Leray–Hopf class
and, moreover, satisfy condition (3) for all s> 3 and l≥ 2 such that

3
s

+ 2
l
> 1.

O.A. indicates that the constructed example of non-uniqueness gives reason to
believe that in the Cauchy problem for the Navier–Stokes equations, the class
of Leray–Hopf solutions is possibly too large for uniqueness, and in the energy
class, the initial-boundary value problem for the Navier–Stokes equations may
be incorrect. This was a very bold hypothesis at that time.

On the other hand, when studying the three-dimensional Navier–Stokes
equations, O.A. also considered it illegal to deliberately narrow the functional
class of “physically correct” solutions to the class of infinitely smooth functions.
She always emphasizes (see, for example, [11]) that the primary question
concerning the Navier–Stokes equations is that of global unique solvability,
in fact, the question of finding a functional class in which one can establish
both the global existence of solutions and their uniqueness. She believed
that the formulation of the “Sixth problem of the millennium” proposed by
Ch. Fefferman (see [1]) and replacement of the problem of a deterministic
description of fluid dynamics by the question of studying the global existence of
smooth solutions, to some extent, transferred the problem from a philosophical
plane into the category of purely sporting achievements.

O.A. presented her views on the “Sixth problem of the millennium” in [11],
as well as in her talk at a seminar on May 3, 2001, at Princeton University.
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In this regard, in parallel with the study of the Navier–Stokes equations,
Olga Alexandrovna was also looking for other nonlinear hydrodynamic models
that, on the one hand, would allow the existence of nonsmooth solutions.
On the other hand, it was expected that global unique solvability would
hold in the energy class. Such models were announced in the report [7]
at the Mathematical Congress in Moscow in 1966 and are currently called
“Ladyzhenskaya models.” Later it was found that this class includes many
models well known in fluid mechanics and turbulence theory, in particular,
generalized Newtonian fluids and the Smagorinsky model.

The proof of the global unique solvability of the “modified Navier–Stokes
equations” (as O.A. called them) was published in [12, 13]. Later, in the 90s
of the 20th century, these equations became a favorite topic of O.A. and she
devoted numerous papers to their study.

Grigorii Seregin and Timofei Shilkin
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Mikhail Shlemovich Birman (1928––2009)

It is hard to overestimate M.S. Birman’s contributions to the spectral theory
of operators and to mathematical physics more generally. Especially famous is
the Birman–Schwinger principle in the theory of discrete spectra, which serves
as a starting point for many problems in quantum mechanics. To a large extent,
Birman’s work on scattering theory sets the course for the development of this
field. In particular, he discovered the invari-
ance principle for wave operators. Another
well-known result is the Birman–Krein formula,
linking the scattering matrix to the spectral
shift function. M.S. Birman and M.Z. Solomyak
created the theory of double operator inte-
grals and developed the method of piecewise-
polynomial approximations of Sobolev classes.
Using it they got precise estimates and asymp-
totics for the spectra of differential and integral
operators. Jointly with his students and col-
leagues, he extended the spectral theory of the
Maxwell operator to the non-smooth case. He
also studied discrete spectra that appear in
gaps of self-adjoint Hermitian operators under
perturbations of various classes. Together with
T.A. Suslina, he contributed a lot to the spec-
tral theory of periodic differential operators by
solving the problem about the absolute continuity of the spectrum and by
developing an operator-theoretical approach to the homogenization theory.

Mikhail Shlemovich (Solomonovich) Birman was born on January 17, 1928,
in Leningrad. His father was a specialist in theoretical mechanics. He was
a professor at the Leningrad Institute of Refrigeration. His mother was a
schoolteacher.

During WWII, Birman’s family was evacuated to Sverdlovsk (now Ekater-
inburg), where Mikhail graduated from high school. When the war ended,
and the family moved back to Leningrad, he enrolled at the Leningrad Elec-
trotechnical University (LEU). The math professors there noticed Mikhail’s
extraordinary mathematical abilities and advised him to transfer to the Faculty



402 Mikhail Shlemovich Birman

of Mathematics and Mechanics of Leningrad State University (LSU). Mikhail
followed their advice.

During his studies at the math department, he specialized in numerical
analysis. Mikhail Solomonovich considered his teachers to be Mark Kon-
stantinovich Gavurin, who supervised his thesis, and Leonid Vitaliyevich
Kantorovich. When he was still a student, Mikhail Solomonovich worked at the
Steklov Institute in Kantorovich’s laboratory. Leonid Vitaliyevich recognized
his young colaborator’s strong intellect and independent thinking and started
giving him tasks that greatly surpassed the level of standard technical work.
In 1950, Mikhail Solomonovich graduated from the University. Although he
was one of the best students in his graduating class, he was not accepted to
the postgraduate school because of the tacit anti-Semitic policies during that
time.

In 1947, Mikhail Solomonovich married his classmate, Tatyana Petrovna
Il’ina. In 1948 they had a son, Zhenya. He and Tatyana Petrovna lived happily
together throughout their whole lives; she died just two years before he did.
Thanks to her love, loyalty, patience, and care, he could fully dedicate himself
to mathematics.

After graduating from the university, Mikhail Solomonovich worked as a
teaching assistant at the Leningrad Mining University, in the department of
mathematics. Despite his heavy teaching load, he was very active in scientific
research. In 1954 he got his Candidate’s degree.1

In 1956, when state policy eased up, Mikhail Solomonovich got a position
at the chair of mathematical physics of LSU, at the initiative and with the
serious support of V.I. Smirnov and O.A. Ladyzhenskaya. It was said that
Smirnov declared an ultimatum to the Rector of the University: “Either you
take Birman, or I leave LSU.”

Smirnov’s demand was granted, and in time, Birman became one of the best
lecturers in the Physics department. In 1962, he got the Doctor of Sciences2
degree for his thesis On the Spectra of Singular Boundary Value Problems.
Mikhail Solomonovich worked at the chair of mathematical physics for the rest
of his life — over 50 years.

With the help of his colleague, Mikhail Zakharovich Solomyak, Birman
created a strong scientific school in the spectral operator theory rocognised
worldwide. Many of his students became famous scientists and are now working
at the best universities in Russia and the West.

Mikhail Solomonovich Birman is the author of over 160 scientific papers
and 2 books. He was a member of the editorial boards for the journals St. Pe-
tersburg Mathematical Journal and Functional Analysis and its Applications.

1 A Candidate’s degree in the Soviet Union was comparable to a Ph.D. in the American
university system.

2 A Doctor of Sciences degree is a higher doctoral degree that can be obtained after the
Candidate’s degree; similar to Habilitation in Germany.
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An important role for Mikhail Solomonovich was his active participation in the
Leningrad Seminar of Mathematical Physics, which was founded by Vladimir
Ivanovich Smirnov in 1947. Now the seminar carries Smirnov’s name. For many
years, Mikhail Solomonovich was head of the V.I. Smirnov Seminar, along with Olga
Alexandrovna Ladyzhenskaya. This photo was taken in 1968. From left to right:
M.Z. Solomyak, N.N. Uraltseva, N.F. Morozov, M.S. Birman, M.M. Smirnov.

Some of Birman’s awards include the title of Honored Scientist of the Russian
Federation, Honored Professor at St. Petersburg State University, and the
Chebyshev Award granted to him by the St. Petersburg government. Birman’s
works have obtained international recognition and are often quoted in the
literature. On multiple occasions, he was a plenary speaker at international
conferences. He was personally invited to some of the best universities and
scientific centers in the world.

Let us describe Mikhail Solomonovich’s scientific style a bit. He rarely
thought in terms of separate problems, no matter how interesting they seemed
to be by themselves. His typical approach was as follows. First, he looked for a
general pattern that included the problem, and then that pattern was analyzed
from every angle. Any theories emerging from this process could be applied
to a wide range of similar problems. Finally, he figured out how parts of the
theory worked in the case of the original problem. Usually, this approach led
to an exhaustive analysis not only of the original problem but also of the whole
class of similar problems.

His approach to developing theories to solve many related problems did
not mean, however, that Mikhail Solomovich was worse at solving specific
problems. His papers are filled with technical findings that are still widely
used.

He was always pushing forward, although he never left a topic unfinished.
Mikhail Solomonovich liked to repeat the phrase: “All my life, I am writing
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Mikhail Solomonovich was a brilliant lecturer. His lectures were not only informative
and well-thought-out, but inspiring as well. He was one of the department’s leaders
and had an exceptionally high reputation. He always had very high professional
standards, which, above all, he applied to himself. Mikhail Solomonovich was very
attentive to the people around him. Many of his colleagues regarded him as an
excellent professor and a wise person in general.

the same paper,” even though he contributed a significant amount of work to
different fields of mathematical physics. When he moved from one topic to
another, however, there was always a string connecting them.

M.S. Birman and O.A. Ladyzhenskaya hiking in Azau, Caucasus, 1972.
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His mindset was not purely mathematical. When choosing a new topic
of research, he was often guided by direct applications to natural physics
problems. He had many talents, so mathematics should consider itself lucky
that he preferred it to other fields.

Photo with the authors of this text — T.A. Suslina (left) and D.R. Yafaev (right).

Photo with his students, St. Petersburg, 1999. Bottom row (from the left): V.A.
Slousch, A.B. Pushnitsky, R.G. Shterenberg. Top row: N.D. Filonov, E.L. Ko-
rotyayev, O.L. Safronov, M.S. Birman, T.A. Suslina, A.A. Laptev.
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Mikhail Solomovich had a sharp mind and a well-rounded education. It
was interesting and edifying to listen to him. Sometimes this perspective was
overly romantic. He wrote poems. He especially loved nature. He was known
to go on walks or bike rides outside the city and enjoyed hiking. He knew
St. Petersburg and its outskirts very well.

Despite his bad health, he actively worked on mathematics until his last
days. Mikhail Solomonovich Birman died on July 2, 2009, after a severe and
long illness.

Tatiana Suslina and Dmitri Yafaev



M.Sh. Birman: Spectral and Scattering
Theories

Perturbation theory plays an important role in the spectral theory of self-
adjoint operators. It draws conclusions about a self-adjoint operator B given
an information regarding a simpler operator A close to B in some sense. In
particular, perturbation theory on the absolutely continuous (a.c.) spectrum
is known as the scattering theory.

Originally, M.Sh. was not an expert in scattering theory. In the fifties
he wrote a row of seminal papers on essential and discrete spectra of self-
adjoint differential operators. In particular, he proved the stability of the
essential spectra of elliptic operators under a wide class of perturbations of
their coefficients and of the associated boundary conditions. For the discrete
spectrum we only mention the famous estimate on the total number N of
negative eigenvalues of the Schrödinger operator −∆ +V (x) in L2(R3):

N ≤ 1
16π2

∫
R3

∫
R3

V−(x)V−(y)

|x− y|2 dxdy, V− = min(V , 0).

This was the first quantitative estimate for the negative spectrum in the multi-
dimensional case. It was independently found by J. Schwinger and is usually
called the Birman–Schwinger estimate. Its proof relied on a general result of
operator theory, which is now known as the Birman–Schwinger principle.

M.Sh. turned his attention to the a.c. spectrum after the famous theorem
by T. Kato and M. Rosenblum appeared in 1957. This theorem concerns a
pair of self-adjoint operators A and B acting in a separable complex Hilbert
space. It states that if the difference B −A belongs to the trace class, then
the wave operators defined as strong limits

lim
t→±∞

eiBte−iAtPac(A) =: W±(B, A)

exist; here Pac(A) is the orthogonal projection on the a.c. subspace of A. In
particular, this result implies that the a.c. parts of the operators A and B are
unitarily equivalent.

Wave operators appear naturally in quantum mechanics. Indeed, consider
two systems described by vectors f0 and f at the time t= 0 and governed by the
“free” A and “perturbed” B Hamiltonians. Their time-dependent evolutions are
described by the unitary groups e−iAtf0 and e−iBtf . It turns out that these
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evolutions are asymptotically close as t→±∞, that is, e−iAtf0 ∼ e−iBtf if
f =W±(B, A)f0.

If the wave operators exist, then the scattering operator

S := W ∗+(B, A)W−(B, A)

commutes with A and thus acts as multiplication by an operator-valued
function S(λ) in the diagonal representation for A. The scattering operator
S and the scattering matrix S(λ) are usually of great interest in problems
of mathematical physics because they connect the initial (for t→−∞) and
the final (for t→ +∞) characteristics of the process directly, bypassing its
consideration for finite times. This also explains the term “scattering theory”
borrowed from physics.

Although beautiful and very sharp in the general framework of operator
theory, the Kato–Rosenblum theorem cannot be directly applied to differential
operators where B−A is a multiplication operator. Naturally, the problem of
applications of this general result attracted the attention of T. Kato himself,
S.T. Kuroda, and many other mathematicians. The contribution of M.Sh.’s
contribution to this highly competitive domain was crucial.

The study of the a.c. spectrum was for M.Sh. a natural continuation of his
analysis of the essential spectrum. The connecting point is his paper of 1962
where the invariance of the a.c. spectrum was verified for perturbations of the
boundary and of the boundary condition for elliptic operators in unbounded
domains. The initial, and as it turned out later very fruitful, idea of M.Sh. was
to consider suitable functions ϕ (for example, inverse powers) of the operators
A, B and to apply the Kato–Rosenblum theorem to the pair ϕ(A), ϕ(B).

The invariance of the absolutely continuous spectrum allowed M.Sh. to
approach the conjecture that for the trace class difference ϕ(B)−ϕ(A) not only
the a.c. spectrum is preserved, but also the wave operators W±(ϕ(B), ϕ(A))
exist and

W±(ϕ(B), ϕ(A)) = W±(B, A).

This result, proven by M.Sh. in 1963 for a wide class of functions ϕ, was
later called the invariance principle. This is an important generalization of
the Kato–Rosenblum theorem which can be directly applied to differential
operators of the Schrödinger type.

At the same period, jointly with M.G. Krĕın, M.Sh. found a link between
the scattering theory and the theory of the spectral shift function. The concept
of the spectral shift function ξ(λ) appeared in the early fifties in the physics
literature in the papers of I.M. Lifshitz in connection with the trace formula

Tr
(
ϕ(B)−ϕ(A)

)
=

∫ ∞
−∞

ϕ′(λ)ξ(λ)dλ.

M.Sh. and M.G. Krĕın showed that the scattering matrix S(λ) differs from
the identity by a trace class operator (so that the determinant of S(λ) is well
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defined) and found a remarkable formula

detS(λ) = exp(−2πiξ(λ))

valid for almost all λ in the a.c. spectrum. This elegant relation (known as
the Birman–Krĕın formula) is often used as the definition of the spectral shift
function on the a.c. spectrum.

Motivated by applications, M.Sh. developed the scattering theory in various
directions. He carried over (jointly with M.G. Krĕın) the Kato–Rosenblum
theorem to unitary operators, introduced local wave operators related to some
interval of the spectral axis, and constructed the scattering theory for self-
adjoint operators A, B acting in different Hilbert spaces.

M.Sh. was a brilliant lecturer. He had an exceptional ability to present
difficult things in a particularly transparent way and to find non-trivial
connections between apparently different facts. It is noteworthy that M.Sh.
always had a firm hand over the audience, which was very beneficial for
everybody.

Relations between M.Sh. and his numerous students were very tight and
went far beyond purely mathematical subjects. In particular, the authors of
this text benefited a lot from his human personality.

M.Sh. was a very wise person. He permanently thought about different
events happening in the world and, as he put it himself, always tried to create
the correct world picture. Sometimes this picture was overly romantic.

This very cursory presentation can be supplemented by a more detailed
paper by M.Z. Solomyak, T.A. Suslina, and D.R. Yafaev On the mathematical
works of M.Sh. Birman, Saint-Petersburg Math. J., v. 23, n.1, 5––60, 2011.

Tatiana Suslina and Dmitri Yafaev



Askold Ivanovich Vinogradov (1929––2006)

Askold Ivanovich Vinogradov made major contributions to number theory.
His most famous result is the celebrated Bombieri–Vinogradov theorem on
the distribution of primes in arithmetic progressions, averaged over a range of
moduli. In many problems of analytic number theory this result replaces the
generalized Riemann hypothesis. Vinogradov proved this theorem in On the
density hypothesis for Dirichlet L-series,1 and independently of him, Enrico

Bombieri proved it2 in On the large sieve;3
Bombieri’s proof is based on the development
of Linnik’s large sieve method.

Askold Ivanovich Vinogradov was born on
October 1, 1929, in the Vsevolozhskiy dis-
trict of the Leningrad region, in the settle-
ment near Shlisselburg Fortress.4 His par-
ents, Maria Alexandrovna Sorikhina (Vino-
gradova) and Ivan Georgievich Vinogradov,
were the descendants of peasants from the Tver
governance. During WWII, the settlement,
where young Askold lived with his mother and
younger sister Diana, was near the front line:
the ring around the Siege of Leningrad had
closed on September 8, 1941, with the right
bank of the Neva and the Schlisselburg fortress

controlled by Soviet troops and the left bank by the Germans. In February
1942, Askold ran5 away from home across Lake Ladoga, was detained in
Vologda, and sent to an orphanage. In the summer of the same year, he

1 See Izvestia AS USSR. Mathematical Series. 29 (1965), P. 903––934.
2 For this and other works, Enrico Bombieri was awarded the Fields Medal in 1974, see

https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/1974/index.html
3 See Mathematika. 12 (1965). P. 201––225.
4 The fortress, also called Oreshek, served as a prison until 1919. Alexander Ulyanov,

Lenin’s elder brother, was executed there for an assassination attempt on Alexander II.
After the revolution, the nearby village on the right side of the Neva was converted into a
workers’ settlement named after the member of “Narodnaya Volya” N.A. Morozov. There
was a gunpowder factory there, where Ivan Georgievich Vinogradov probably worked.

5 That is according to his 1952 autobiography. However, in his 1991 autobiography,
Vinogradov wrote that he was evacuated from Leningrad via the “Road of Life” in March
1942.

https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/1974/index.html
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was sent to another children’s home in the Vologda Region, where he finished
7th grade in 1945. His mother and sister were evacuated from Leningrad in
March of 1942. His mother found him in 1944; in June 1945, he left the
children’s home to join his mother, and in 1947 his mother and Diana returned
to Leningrad.

Let us follow with a direct quotation from the 1991 autobiography (that is
kept in the LOMI6 archives):

In 1945, I entered the Baku Naval Preparatory School. Two years later,
our school relocated to Kaliningrad (former Königsberg), where I grad-
uated from the Preparatory School in 1948 and was then transferred to
the 1st year of the 2nd Baltic Higher Naval School,7 which was based on
and meant as the continuation of our Preparatory School. I graduated
from Higher Naval School in 1952 with a torpedoman specialty and
received an officer-torpedoman certificate, №743413. I was transferred
to the reserve during our allocation and, by special order of the
Minister of the Navy, was sent to Moscow, to the postgraduate school
of the V.A. Steklov Mathematical Institute of the USSR Academy
of Sciences to Academician Ivan Matveyevich Vinogradov. Although
the whole thing was done at the special request of the then President
of the USSR Academy of Sciences S.I. Vavilov, I.M. Vinogradov and
Y.V. Linnik were in fact behind it. These two men followed my fate
throughout the years that I studied at the Naval School.

So, after seven years of military experience, on November 15, 1952, young
Askold Vinogradov entered postgraduate school at the Steklov Institute of
Mathematics with I.M. Vinogradov as his supervisor. Askold learned the
famous I.M. Vinogradov method in number theory and, according to his
friends, told his senior namesake, “Now I will solve problems using your
method.”

I.M. Vinogradov said in response,

were there any interesting ones [problems], I would have solved them
myself. I will send you to postgraduate school in Leningrad to study
other things under Y.V. Linnik’s supervision.

On February 15, 1953, Vinogradov was transferred to LOMI, and Linnik
became his scientific supervisor.

On December 24, 1953, A.I. Vinogradov passed the postgraduate examina-
tion with the grade “excellent,” answering three questions in front of a com-
mission consisting of Y.V. Linnik, L.V. Kantorovich, and A.A. Markov. The
questions were the following: the Cauchy integral, the Fourier transform, and
the notion of the Jordan curve. In the report for 1953, there is a list of books
that Vinogradov read during his first year of postgraduate study at LOMI:

6 LOMI (now POMI or PDMI) is the Russian abbreviation for the Leningrad branch of
the V.A. Steklov Mathematical Institute of the USSR Academy of Sciences.

7 42nd Baltic Higher Naval School of Surface Navigation (unit 78347)
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Fichtenholz’ Differential and Integral Calculus, in three volumes; Privalov’s
Introduction to Complex Analysis; Vinogradov’s Method of Trigonometric
Sums in Number Theory ; Ingham’s The Distribution of Prime Numbers; and
Titchmarsh’s The Riemann Zeta Function.

When the 1954 annual report of LOMI was being discussed, Linnik char-
acterized Vinogradov in the following way: “I think Askold Ivanovich will do
well with his subject: he is an assertive man.”

Having defended his Ph.D. thesis, Additive Problems with Two Prime
Numbers and Additional Terms in 1955, Vinogradov was retained at LOMI as
a junior researcher. At that time, Linnik was interested in algebraic geometry
and conducted a seminar on André Weil’s Foundations of Algebraic Geometry.

The thing is, that from the Riemann hypothesis for zeta-functions of
curves over finite fields, proved by André Weil in 1948, follows the best
possible estimate for special trigonometric sums, the Kloosterman sums. Weil’s
estimate is inaccessible for the usual methods of the theory of trigonometric
sums, including the poweful I.M. Vinogradov’s method, so Linnik wanted to
understand and generalize Weil’s result. Vinogradov recalled that the keynote
speaker of the seminar was Linnik’s student Boris Skubenko, later a remarkable
expert in the geometry of numbers, and each talk began with Linnik’s request,
“Boris Faddeyevich, remind us, please, the definition of sheaves.” 8

On January 4th, 1963, Askold Ivanovich defended his habilitation9 thesis, A
Study of Properties of Euler Products for Zeta Functions of Various Algebraic
Number Fields and Their Application to Problems of Analytic and Algebraic
Number Theory ; from 1964 onwards, he worked as a senior researcher at LOMI
(and as a leading researcher from 1986). As mentioned above, in 1965 he proved
the density conjecture for the Dirichlet L-series, averaged over the moduli.
This remarkable result was not properly appreciated at the Steklov Institute
at the time; only a quarter of a century later, A.I. Vinogradov was awarded
the I.M. Vinogradov Prize for this work.

From the mid-1960s onwards, Vinogradov’s research interests broadened
considerably. For instance, in 1967, he tried (unsuccessfully) to prove the well-
known Kummer’s conjecture on the distribution of the arguments of cubic
Gauss sums and proposed an interesting approach to the analytic continuation
of the Artin L-function and its connection with the reciprocity laws. The
year 1973 was a turning point in his scientific philosophy when he attended
L.D. Faddeev’s lectures on the Selberg trace formula at a mathematical school
in Vilnius. Vinogradov was one of the first to realize that the spectral theory of
automorphic functions can provide a powerful new method in analytic number

8 The story is possibly apocryphal: Ludwig Faddeev said that when he was giving lectures
at LSU at the student seminar on quantum field theory, Olga Ladyzhenskaya began each
talk with “Ludwig, please remind us the definition of creation and annihilation operators.”

9 The Russian “doctor nauk” degree has no academic equivalent in North America; it is
a higher doctoral degree and is roughly comparable to the German Habilitation, the French
HDR, and British higher doctorates.
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theory, and he devoted himself wholly to that subject.10 A complete list of
A.I. Vinogradov’s papers can be found on his page at Math-Net.Ru [1].

At this point, a friendship began between Askold Vinogradov, Ludwig
Faddeev, and Ludwig’s young students, Aleksei Venkov and Leon Takhtajan.
Vinogradov participated actively in life at LOMI and organized a weekly
seminar on modern number theory with Aleksei Venkov, Nikolai Proskurin,
Maxim Skriganov, and Leon Takhtajan. Boris Venkov and Boris Skubenko
gave talks at the seminar; Sergei Stepanov and Andrei Tyurin came from
Moscow to participate, along with many others. Askold Vinogradov actively
supported Nikolai Kuznetsov during the difficult moments of his life. New ideas
led N.V. Kuznetsov to the “Kuznetsov trace formula,” one of the basic elements
of modern analytic number theory. Young Viktor Bykovskii, a graduate of
Moscow State University and a student of N.M. Korobov, also came from
Moscow. He was at a crossroads, as I.M. Vinogradov had advised him to
“improve” the zero-free region of the Riemann zeta-function. Vinogradov
introduced Bykovskii to Kuznetsov’s trace formula, and from that moment
on, Viktor’s successful work in number theory has started: in 1982, Ludwig
Faddeev submitted Bykovskii’s paper to the Doklady of the USSR Academy
of Sciences; now, V.A. Bykovskii is a well-known Russian mathematician,
a corresponding member of the Russian Academy of Sciences.

Vinogradov at work.

The joint paper, Zeta function of the additive divisor problem and the
spectral decomposition of the automorphic Laplacian, by Vinogradov and

10 Starting with the pioneering work by Nikolai Kuznetsov on Kuznetsov’s trace formula,
the method has been successfully applied to various problems in number theory. We refer
the reader to the papers by the Polish-American mathematician Henryk Iwaniec and the
South African-born American mathematician Peter Sarnak and their co-authors working in
the USA.
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Takhtajan, was recognized as the best mathematical work of the year 1984
in the Mathematics Department of the Academy of Sciences of USSR.

A.I. Vinogradov was actively involved in the scientific and public life at
LOMI and participated in all the informal activities of the Laboratory of
Mathematical Problems in Physics, led by L.D. Faddeev. The geography of
the offices on the 5th floor of LOMI facilitated interactions: Ludwig Faddeev
in office 506, Aleksei Venkov and Leon Takhtajan in 507, Askold Vinogradov
in 508. Askold Ivanovich came on “presence days,” 11 Mondays and Thursdays,
and his office became the center of interactions on scientific, literary, and socio-
political subjects. Vinogradov traditionally hosted tea parties, of which Boris
Venkov and Boris Skubenko were frequent participants, gathering friends both
from neighboring offices and from other floors of LOMI.

While Ivan Matveyevich Vinogradov was alive, Askold Ivanovich had good
relations with the people at MIAN (the Steklov Mathematical Institute at
Moscow), but they took a turn for the worse because of the conflicts at MIAN
after I.M. Vinogradov death in 1983. So, in 1987, Vinogradov moved to
Khabarovsk to join Kuznetsov and Bykovskii; on February 15, 1987, he became
a chief researcher at the Institute for Applied Mathematics of the Far East
Branch of the USSR Academy of Sciences. In December of 1991, he returned
to LOMI. During these years, Vinogradov worked only on the major problems
of number theory, remaining confident in the possibilities of the spectral theory
of automorphic functions till the end of his days.

Askold Ivanovich Vinogradov was a unique person: a naval officer and a true
gentleman, in the 19th-century sense of the word, a famous mathematician, a
pleasant companion for conversation and discussion who never raised his voice,
a fan of ballet and rhythmic gymnastics (in his younger years) and a sambo12
athlete who could deal with any bully. While studying at the Naval School,
he was a member of the Komsomol.13 In 1956, he went to Kazakhstan to help
with the harvest on tselina14 land, and in 1957––1961 he was an instructor of
air defense at LOMI. He did not join the Communist Party, as he was critical
of the many aspects surrounding its policies and ideology. At the same time,
he was a patriot of his country and had a deep respect for the Great Patriotic
War and the Supreme Commander of the Soviet Army. Like Boris Faddeyevich
Skubenko, he was very keen on war memoirs and avidly read the memoirs of
both Soviet commanders and German generals.

11 In academic institutions, there was usually no need to come to work every day: one or
two days a week were compulsory and called “presence days,” and on the other days, called
“library days,” academics could go to the library or work at home.

12 Sambo is a martial art that originated in the Soviet Union in the 1920s.
13 Komsomol was a political youth organization in the Soviet Union, de facto the youth

division of the Communist Party, although officially independent.
14 Tselina or virgin lands is an umbrella term for underdeveloped, sparsely populated,

highly fertile lands often covered with chernozem soil, which were mostly located in the
steppes of the Volga region, Northern Kazakhstan, and Southern Siberia.
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Vinogradov’s tomb.

His lifestyle was very modest, and he was consistent in all his habits. For
example, during Soviet times he used to go to Novy Svet in Crimea every
summer, tried to walk as much as possible, regularly came to Komarovo,
and during his walks with Takhtajan liked to discuss new approaches to
various problems in number theory. As for drinks, he could allow himself a
little champagne, being at the same time indulgent towards the tastes and
predilections of his colleagues. He was very generous and always helped old
friends who were in trouble. The Khabarovsk period of Vinogradov’s life is
reflected upon in a review by V.A. Bykovskii [2].

Askold Ivanovich would often marvel at descriptions in the tabloids of
“contact with aliens” and people allegedly “abducted for experiments.” He
used to say, “If I had met them, I would immediately ask how to prove the
Riemann hypothesis!” Perhaps now he knows...

Leon Takhtajan
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Victor Petrovich Havin (1933––2015)

Victor Havin, an outstanding mathematician working in Complex and
Harmonic Analysis, was one of the leaders of the Saint Petersburg analysis com-
munity during a 50-year period starting from the mid-1960s. He has founded
and shaped the modern St. Petersburg analysis school, which still continues
to bring forth new generations of bright scientists. His main mathematical
achievements are in the field of complex approximation, spaces of analytic

functions, potential theory, and various mani-
festations of the Uncertainty Principle in Har-
monic Analysis.

Havin organized and led the joint Univer-
sity/Steklov Institute Analysis seminar for sev-
eral decades. A great number of young mathe-
maticians, many of whom later achieved world
renown, started their work within that seminar.

Victor Havin was born on the 7th of March,
1933, in Saint Petersburg (at that time Lenin-
grad). His father (Petr Yakovlevich Havin) was
a philologist, slavist, and one of the founders
of the Journalism division (which later became
a department) at Leningrad University; during
WWII he served at the Red Army propaganda
department and received several medals. The
rest of the family succeeded in avoiding the

apocalypse of the Siege of Leningrad, having been evacuated to Tashkent
(now, Uzbekistan). Havin’s mother (Dina Yakovlevna Havina) was a musician,
a violinist at the Leningrad Philharmonic Orchestra and the Mikhailovsky
(Maly) Opera Theater Ensemble.

After returning to St. Petersburg, Havin completed his education at one
of the best high schools, the former “First St. Petersburg Gymnasium,” in
1950. According to Havin, during this period he was more inclined to
pursue a scholarly career in the humanities. He spoke at least three foreign
languages fluently (German, French, and English), and the Foreign Languages
Department of the University would have been a natural choice for him.

However, his father strictly forbade him to even think about linguistics
and ordered his son to make a choice between physics and mathematics
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for his future studies. The reason for this was the publication of Josef
Stalin’s “scientific” opus, “Marxism and Problems of Linguistics,” and the
well-founded fear of Havin’s father that linguistics would become an area of
ideological purging as had happened with biology at the time. Luckily for
the St. Petersburg mathematical community, Havin chose mathematics, and
in 1950 he entered the Department of Mathematics and Mechanics (known
simply as Mat-Mekh).

Among Havin’s teachers at Leningrad University were G.M. Fichtenholz,
the author of a famous analysis course, L.V. Kantorovich, future Nobel Prize
laureate in economics, and V.I. Smirnov. Havin regularly participated in the
research seminar of the Division of Analysis. In 1953 he gave a series of talks
on duality theory at this seminar, which was novel and influential at this time,
followed by a survey on “analytic functionals” by P. Lévy; later on, Havin was
invited to give these talks again at the famous Gelfand seminar in Moscow.

In 1955 Victor Havin started his graduate studies under L.V. Kantorovich
and, informally, V.I. Smirnov. Havin always considered their influence on his
mathematical education to be very important. However, neither of them was
a supervisor in the traditional sense of the word: neither directed the young
PhD student in his choice of future research themes. For instance, Leonid
Kantorovich said at the very beginning that he was busy at the time with
economics applications, and Havin was free to choose his research direction
himself. In this way, Havin turned out to be, in a sense, an “autodidact” in
mathematics.
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Havin defended his Candidate of Science (PhD) thesis in 1959. By this
time, he already had 6 papers published in peer-reviewed journals and was the
author of several remarkable results. One of them was the solution to a problem
on the generalized Laurent representation of an arbitrary function analytic in
the complement of a simple rectifiable arc, posed by a prominent analyst, V.V.
Golubev, in the 1920s. Another important result from this period is related to
the “separation of singularities” — a recurring topic among Havin’s interests.
Here the problem is to represent a function analytic in the intersection of two
domains by a sum of functions that are analytic in the respective domains.
Using the “soft” duality arguments, Havin gave a short proof of the results by
Aronszajn.

In spite of his brilliant Ph.D. defense, Havin passed through a difficult
period of his life right afterward. Due to the (of course, unofficial) anti-Semitic
restrictions, widespread during this time in the Soviet Union, he was refused
several teaching positions at various St. Petersburg technical universities.
During this desperate situation, Prof. Dmitry Faddeev, mobilizing all his
authority, greatly helped by insisting in front of the university administration
that a position be opened for Havin.

A lecture in Ufa, 1980.

The entire life of V.P. Havin was connected to the Department of Mathe-
matics and Mechanics of St. Petersburg (Leningrad) University — first (from
1959 to 1962) as an assistant and then (1962––1970) as an associate professor (a
“docent” in Russian); in 1971 Havin was promoted to the rank of full professor,
a position he occupied till his death in 2015. From 1997 to 2004 Havin served
as the Head of the Analysis Division. In the 1960s, Havin played a crucial
role in the modernization of the teaching of analysis at Leningrad University.
Together with G.P. Akilov (one of his mentors and friends), he modernized
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the course of analysis; specifically, they included the Lebesgue integral and the
integration of differential forms in Rn to the standard curriculum. At that
time, this was a revolutionary step: these changes in Havin’s analysis course
were made earlier than at the Sorbonne, Moscow University, and other first-
class universities around the world. Since then, he delivered this course 17
times and published a textbook on the material of his lectures.

He also delivered many specialized lectures as courses in Leningrad (Saint
Petersburg) and, as an invited professor, in many other cities of the former
Soviet Union and, later, abroad (for instance, he taught at McGill University
in Montreal for several semesters from 1995 to 2002). The profound and state-
of-the-art content of Havin’s lectures, as well as their extremely vivid and clear
presentation, always gathered full lecture halls and attracted the most brilliant
students.

What follows is a brief account of the mathematical interests and main
contributions of V.P. Havin to Complex and Harmonic Analysis. One of his
early achievements was finding integral analogs of the Vitushkin theorem on
uniform rational approximation. It turns out that in the mean square case
the role of analytic capacity is played by the classical logarithmic capacity.
Havin returned to the subject of the separation of singularities with estimates
(e.g., in the class of bounded functions) several times; in particular, on joint
papers with A. Nersessyan and J. Ortega–Cerdà. His last paper on this topic
appeared in 2007.

In the 1970s Havin discovered and studied the phenomenon of the twofold
decrease of smoothness of an analytic function compared with the smoothness
of its absolute value on the boundary (this property is said to have been
noticed for the first time by L. Carleson and S. Jacobs who, however, did not
publish the result). A separate series of papers by Havin dealt with properties
of holomorphic functions representable by the Cauchy integrals of complex
measures.

In a long-time collaboration with V.G. Maz’ya, Havin founded the so-called
nonlinear potential theory, which was applied to problems of uniqueness and
approximation for analytic and harmonic functions and to the study of the
Cauchy problem for the Laplace equation.

In a series of joint papers with E. Malinnikova and S. Smirnov, approxima-
tion properties of harmonic vector fields and differential forms were studied;
multidimensional analogs of the Runge theorem and Hartogs–Rosenthal the-
orem were proven, and it was shown that the analog of Bishop’s localization
principle is not valid in dimensions higher than two.

One of Havin’s favorite themes was the so-called Uncertainty Principle
in Harmonic Analysis — a heuristic statement saying that a function and
its Fourier transform cannot be small simultaneously. As a classic example
one should mention the Heisenberg Uncertainty Principle. However, the
“smallness” may be understood in a number of completely different ways
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J.-P. Kahane, V.P. Havin (with the first volume of “Algebra and analysis” journal),
and N.K. Nikolski after Kahane’s talk at PDMI, 1989.

(smallness of support, fast decay at infinity, etc.), many of them leading to
deep and important problems.

In a series of papers (written jointly, in part, with his student Burglind
Jöricke) some “uncertainty principles” were proven for the convolution integral
operators. Another profound result that Havin achieved deals with the
uncertainty principle for M. Riesz potentials on a line and the (im)possibility
of its extension to higher dimensions.

The work of V.P. Havin in the area of the Uncertainty Principle culminated
in his seminal book The Uncertainty Principle in Harmonic Analysis written
jointly with B. Jöricke and published in 1994 by Springer-Verlag. This book
is a true encyclopedia on the subject that covers not only classical results of
UP (often with new and more conceptual proofs) but also numerous original
results obtained by members of Havin’s seminar.

A list of Havin’s publications (as complete as possible) can be found in [1].
However, probably the most important mathematical result of V.P. Havin,

his “Best Theorem”, was the mathematical tradition and community that he
created. This community was formed around the joint University/Steklov
Institute Analysis seminar. The seminar was started by Havin in around
1963 with only four of his young students, and has since grown to become
the important cultural event for the entire city’s mathematical community, a
“must-attend” for all analysts in Saint Petersburg. Many prominent analysts
started their mathematical life in this seminar.

Havin spent a considerable amount of his time and effort nurturing young
talents. He supervised 31 PhD theses, and, according to the Mathematics
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V.P. Havin and J.E. Brennan, Euler institute, 2008.

Genealogy Project, he currently has 184 descendants. Four of his former
students (A. Alexandrov, F. Nazarov, S. Smirnov, A. Logunov) won the
prestigious Salem Prize in Harmonic analysis; 6 more Salem prizes can be found
among his “grandchildren” (A. Volberg, S. Treil, N. Makarov, S. Petermichl,
Dapeng Zhan, D. Chelkak). Last but not least, Stanislav Smirnov was awarded
the Fields Medal in 2010.

Undoubtedly, Havin’s success in creating this special environment, a true
hotbed for talent, owed much to his charismatic personality and an inex-
haustible emanation of mathematical ideas and enthusiasm. Invariably, he
attracted students and his colleagues with his amicability, openness, and
intellectual generosity. He was a remarkably kind and decent person; a
very rare pure not materialistic type, who never understood, nor wanted to
understand, anything about money.

V.P. Havin’s scientific and teaching activity got well-deserved (though, in
the authors’ opinions, quite delayed and insufficient) recognition. He got
several national and international awards, including the degree of Doctor
Honoris Causa from Linköping University (Sweden) in 1993. V.P. Havin was
also elected the Spencer Lecturer at Kansas State University (USA, 1996) and
the Onsager Professor at Trondheim University (Norway, 2000). In 2004, his
exquisite results on admissible majorants for model subspaces were awarded
the Robinson Prize by the Canadian Mathematical Society. Havin was also
awarded the Chebyshev Prize by the St. Petersburg Government (2011) and an
Honorary Professorship at St. Petersburg University. He became an Honored
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Scientist of the Russian Federation in 2003 and was awarded the Order of
Friendship in 2011.

Classical music and literature played a very important role in Havin’s life.
Among his favorite authors were Lev (Leo) Tolstoy, in particular Tolstoy’s War
and Peace (which V.P. studied like the Bible), Pushkin, Tyutchev, Bulgakov,
and Vassily Grossman. With his mastery of languages, Havin preferred to
read Western writers in the original, not as translations, especially in German
(Goethe, Heine, T. Mann) and French (e.g., J.-P. Sartre’s novels and essays).
Havin often quoted famous literary maxims and formulae in everyday speech
when they corresponded to his feelings at that moment. One of his last
mathematical masterpieces, a purely real and, probably, most direct proof
of the famous Beurling–Malliavin Multiplier Theorem, appeared in 2005 in
a paper entitled Beurling–Malliavin Multiplier Theorem: the Seventh Proof.
The title emphasizes the fact that several (about six) different proofs of this
extremely profound theorem were known previously and at the same time it
made an allusion to M.A. Bulgakov’s famous novel The Master and Margarita.
As an epigraph Victor Petrovich used the following quotation:

...На это существует седьмое доказательство, и уж самое надежное!
И вам оно сейчас будет предъявлено. (“...Yet the seventh proof of
this exists, which is reliable beyond a doubt! And it will be shown to
you in a while,” recall that Bulgakov/Woland speaks about the proof
of the Devil’s existence.)

Havin also had a deep interest in philosophy. Unfortunately, he did not write
on these subjects himself, with one notable exception: his inaugural lecture for
the Doctor Honoris Causa from Linköping University, “Mathematics as a source
of certainty and uncertainty” [2], is a remarkable short essay on the worldview
and philosophical values of the mathematical vision.

A detailed mathematical biography of Victor Havin can be found in the
memorial volume, 50 Years with Hardy Spaces: A Tribute to Victor Havin [1],
while [4, 5] contain Havin’s vivid recollections of his years as a young man at
Mat-Mekh.

Anton Baranov, Nikolai Nikolski
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V.P. Havin and the Uncertainty Principle
in Harmonic Analysis (VP and UP)

One of the main research areas of Victor Petrovich (VP) Havin and many of
his outstanding students is called the Uncertainty Principle (UP) in Harmonic
Analysis. This vast collection of mathematical problems and deep results
originates in the ideas of Norbert Wiener from the 1920s. The initial postulate
of the principle belongs to Fourier analysis and can be formulated as follows:

A function (measure, distribution) f and its Fourier transform f̂ cannot be
simultaneously small.

The name of the principle clearly refers to physics as Heisenberg’s inequality
presents one of the early examples of UP, showing that second moments related
to a function and its Fourier transform cannot both be small:∫

R
x2|f(x)|2dx

∫
R
ζ2|f̂(ζ)|2dζ ≥

||f ||4L2(R)

16π2
. (1)

As it turns out, “smallness” in Wiener’s broad statement can be understood
in a number of different ways (smallness of support, fast decay at infinity,
largeness of the zero set, etc.), many of them leading to deep and important
problems. At present, the area of UP grew far beyond its original borders and
now, in addition to problems of classical Fourier analysis, includes studies of
bases and frames in Banach spaces, harmonic analysis on groups, spectral
problems for differential operators and numerous other problems, see for
instance [4] or [10].

Like in several other areas of analysis, the contribution of V.P. Havin in
the area of UP is broad and significant. It includes not only original results
but also promoting and teaching the subject of UP to his many colleagues and
friends in the St. Petersburg analysis group. Due to his efforts, many classical
problems of UP were studied and solved by the members of the said group and
a number of outstanding talks were delivered at the Havin–Nikolski seminar.

As an advisor, VP had a rare gift for selecting the right problem for each
of his pupils. The problem had to satisfy two necessary conditions: first, VP
must not have known how to solve it. Second, VP must have known, through
his tremendous powers of intuition, that its solution lied somewhere within the
abilities of the particular student. Many advances in the area of UP appeared
this way.
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VP and UP: f and f̂ .

One of the “systemic” contributions of VP to UP is the assertion, quite
surprising at the time it was formulated, that UP holds not only for the
Fourier transform but for many convolution operators, which set up the natural
problem of description of kernels with this property. This idea was developed
to the comprehensive theories of “epsilon-local” and “anti-local” operators with
numerous natural examples (see Part II, Chapter 5 of [7] for details).

As an example of a “non-Fourier” variation on the theme of the UP, let us
consider a well-known theorem by M. Riesz, which says that if a measure and
its Riesz potential both vanish on the same non-empty open set in Rn then the
measure is zero identically. In his paper [5] VP made a significant improvement
of this theorem in the one-dimensional case proving that if the measure is
absolutely continuous with Hölder density of certain precise order, then the
open set in Riesz’ statement can be replaced with an arbitrary Borel set of
positive measure. The problem of extending this result to Rn and improving
the Hölder condition to continuous densities stood open for many years and
was studied by VP together with several of his outstanding students. The Rn
question was finally answered in the negative by Havin and D. Beliaev (VP’s
“mathematical grandson”) in [1]. Their sophisticated construction used some
of the techniques of J. Bourgain and T. Wolff.

One of the deepest parts of UP is the famous Beurling–Malliavin (BM)
theory, which produced the celebrated theorem on completeness of families of
exponential functions {eiλnz} in L2(0, 1). The original proofs which appeared
in the 1960s [2, 3], continue to fascinate harmonic analysts to this day.
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A significant part of VP’s work in UP concerned the study and promotion of
BM theory to his students and colleagues. Over the years he made a number
of essential improvements and extensions in various parts of the theory, which
opened possibilities for further studies, still pursued by many mathematicians.
One of the gems in this part of VP’s work is the paper “Seventh proof...”
joint with his former students J. Mashreghi and F. Nazarov. The title of
the paper refers to the famous line from M. Bulgakov’s novel “Master and
Margarita” and its text contains, among other things, the only “real” proof of
the Beurling–Malliavin multiplier theorem by F. Nazarov. The paper raised
natural questions on so-called admissible majorants later answered by his
students A. Baranov (independently) and Yu. Belov (jointly with VP).

The work of V.P. Havin in the area of UP culminated with the seminal
book The Uncertainty Principle in Harmonic Analysis [7] written jointly with
his student B. Jöricke (a shorter survey, presenting a digest of the book is
contained in [6]). The book covers the classical results of UP and gives some
of them new updated proofs, many of which were improved by the authors
themselves, including a full treatment of the BM theory. Some of the theorems
are given up to three different proofs. The results are presented in two groups:
those that can be proved with real methods and those that require complex
analysis.

The book, written in the 1980s, was a result of a large research project
completed by the authors in a tight collaboration with a number of people
(mostly, VP’s pupils) in the Havin–Nikolski seminar, including F. Nazarov,
S. Hruschev, A. Borichev, A. Volberg, and many others. Collaborators’ deep
original results entered the book as sections and chapters during long hours
of mathematical work spent at VP’s three-piece apartment on Golodai Island.
The relentless search for perfection resulted in a text destined to be a reference
source for experts for many years to come. Together with the book by VP’s
friend and colleague at McGill University P. Koosis, The Logarithmic Integral
[9], the book by Havin and Jöricke is among the most significant texts in the
field of UP.

Alex Poltoratski, Fedor Nazarov
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Ludwig Dmitrievich Faddeev (1934––2017)

Ludwig Faddeev (Ludwig Dmitrievich Faddeev) was one of the giants of
mathematical physics. His fundamental contributions include the solution to
the quantum three-body problem, developing quantization of gauge theories,
the discovery of the Hamiltonian complete integrability of the Korteweg–De
Vries equation, and laying out the foundations for integrable quantum field
theories and quantum groups. He created one of the most influential research
groups in mathematical physics, for many years he was the director of the

Leningrad branch of the Steklov Mathematical
Institute of the Academy of Sciences of the
USSR (and later of Russia). He was the presi-
dent of IMU from 1987––1990.

Ludwig Faddeev was born in Leningrad
(now St. Petersburg), USSR (now the Russian
Federation) on March 23, 1934, into the fam-
ily of mathematicians Dmitry Konstantinovich
Faddeev and Vera Nikolaevna Faddeeva. His fa-
ther was also a talented pianist, so Ludwig grew
up surrounded by mathematics and classical
music. During the time he was graduating from
high school, he seriously considered the career
path of a professional musician, but in the end,
he decided to go to University. At the time,
his father was the Chair of the Mathematics

Department, so Ludwig enrolled in the Physics Department of Leningrad
University. When he was in his 3rd year of studies, a unit within the
department specializing in Mathematical Physics (‘kafedra Matematicheskoi
Fiziki’) was established. L.D. Faddeev and N.N. Uraltseva were among the
first five students to graduate with this specialization.

While he was an undergrad, Faddeev took a reading seminar with O.A. La-
dyzhenskaya on K.O. Friedrichs’ book Mathematical aspects of the quantum
theory of fields. After this class Ladyzhenskaya became his undergraduate
adviser. Her first suggestion for Ludwig was to study the works of N. Levinson
on inverse scattering theory, and to present his investigations at the seminar.
This was a very profound moment: the inverse scattering problems influenced
Ludwig’s research for a very long time. Regarding these times, he wrote the
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following about O.A. Ladyzhenskaya: “I am forever grateful for the direction
she gave me...” He kept Ladyzhenskaya’s portrait on his desk till his last day.

He graduated from Leningrad University with an equivalent of a master’s
degree in 1956, and continued on to postgraduate school. O. A. Ladyzhenskaya
took him as her Ph.D. student. For his Ph.D. thesis, Faddeev solved the inverse
scattering problem for a one-dimensional Schrödinger operator on a line with
rapidly decaying potential. He defended his PhD thesis in 1959. This was the
beginning of Faddeev’s long, productive life in mathematical physics.

After completing his Ph.D. thesis he continued working on scattering
problems. He found the complete solution to three-particle scattering, solved
the inverse problem for the 3-dimensional Schrödineger operator and had other
important results, such as the study of modular functions using methods
of scattering theory. Then he moved on to a completely different subject:
to quantization of gauge fields. Together with V. Popov he developed per-
turbation theory for the quantum Yang–Mills theory. These results, known
as Faddeev–Popov gauge fixing, were a revolutionary discovery. They are
still used in theoretical high-energy physics. After this, Faddeev moved on
to a different subject again. He focused on soliton equations and, together
with V.E. Zakharov, he presented the Korteweg–De Vries equation as a
completely integrable infinite dimensional Hamiltonian flow. This was the

A. Sedrikyan, V. Garzadyan, A. Polyakov, A.B. Migdal, R.E. Kallosh, A.A. Migdal,
and L.D. Faddeev on a conference hike in Tsaghkadzor, Armenia, 1983.
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first known example of an infinite dimensional Hamiltonian integrable system.
Together with L.A. Takhtajan and V.E. Zakharov, he established the complete
integrability of two-dimensional relativistic field theory, known as the Sine–
Gordon equation.

For Faddeev, the research on integrable non-linear classical field theory
was a stepping stone to achieving the goal of finding a non-perturbative
construction of quantum field theory. So he started to work on the quantization
of classical integrable field theories and made instrumental discoveries such
as the algebraic Bethe ansatz; he coined the term “Yang–Baxter equation,”
emphasizing its importance. This series of works leads to the discovery
of quantum groups. Many of his works during this period were done in
collaboration with his younger colleagues from the Laboratory of Mathematical
Methods in Theoretical Physics at LOMI. More on this and for a more detailed
description of Faddeev’s research contributions, see [1].

Faddeev liked sports. In his young years he was a stroke of the rowing eight
team and a member of the cross-country skiing team. He kept his love for
skiing and hiking throughout his life. He loved literature, history, and music.
Among his favorites were V. Nabokov’s Ada and K. Hamsun’s Pan. He had an
excellent collection of music and was very proud of it. Isadore Singer recalled
that during Ludwig’s first visit to Boston, they spent a night visiting jazz
joints.

Mathematical physics became an established field around the 1950s––1960s.
There are many views on what mathematical physics means, and a variety of
opinions on how much mathematical rigor should be present in mathematical
physics, and how close it should be to physics. According to Faddeev, the goal

Mathematical Physics group at the Physics Department. Second row, left to
right: V.L. Oleynik, B.S. Pavlov, V.B. Matveev, I.A. Molotkov, V.F. Lozutkin,
S.Yu. Slavyanov, A.R. Its, A.N. Popov. First row: V.S. Buslaev, L.D. Faddeev,
M.S. Birman, V.S. Buldyrev, N.V. Smirnov, 1984.
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of a mathematical physicist is not to make rigorous what is already understood,
to the extent of being true beyond reasonable doubt by physicists, but to go
above and beyond, discovering new phenomena and structures using physical
and mathematical intuition, on the basis of mathematical knowledge. In an
article intended for the general audience, he wrote: “If someone asked me who
among the twentieth-century physicists impressed me the most, I would answer:
P.A.M. Dirac, H. Weyl, and V.A. Fock.” It is an interesting illustration of his
thesis on mathematical physics: Faddeev regarded H. Weyl as a mathematical
physicist. To questions regarding the aim of mathematical and theoretical
physics, Faddeev always answered, “There is only one direction and goal: the
understanding of the structure of matter and space-time.”

On the physics side he thought of himself as continuing the tradition of
V.A. Fock. On the mathematical side, he was influenced by V.I. Smirnov’s
famous mathematical physics seminar in Leningrad. In many ways, Faddeev
is a descendent of the St. Petersburg mathematical tradition, which goes back
to L. Euler and includes names such as M.V. Ostrogradsky, P. L. Chebyshev,
A.M. Lyapunov, A. A. Markov, V.I. Smirnov, and many others.

Ludwig had many friends and colleagues around the world. P. Lax,
L. Nirenberg, I. Singer, J. Moser were among the mathematicians whose
friendship Ludwig particularly valued.

In 1972, he became the head of the Laboratory of Mathematical Methods
in Theoretical Physics at the Leningrad Branch (LOMI) of the Mathematics
Institute of the Academy of Sciences in Moscow. In 1976 he was elected full

L.D. Faddev with C.N. Yang and R. Baxter, Seoul, 1997.



432 Ludwig Dmitrievich Faddeev

member (academician) of the Soviet Academy of Sciences and became the
director of LOMI.

Faddeev initiated a remarkable series of conferences called “Quantum soli-
tons,” which would take place every three years during the late 1970s and early
1980s.

During the cataclysmic dismantling of the Soviet Union, state-funded
science became the first victim of privatization. With no alternative to state
funding, science was in free fall, along with the whole country in general.
Faddeev was one of the very few people in academia of high standing who did
not leave the country for long periods of time. During this period he was offered
the directorship of the Institute for Theoretical Physics at Stony Brook. The
director of ITP at the time was C.N. Yang, who was about to retire. Though
Ludwig was very pleased with the offer, he declined it.

Ludwig always valued the international nature of science. In this respect
it is only natural that for the period of 1987 to 1990, he was president of the
International Mathematical Union.

From the Faddeev’s certificate of Pomeranchuk prize.



Ludwig Dmitrievich Faddeev 433

L.D. Faddeev was elected to leading academies, including the Royal Swedish
Academy of Sciences (1989), the National Academy of Sciences1 (1990), the
French Academy of Sciences (2002), and the Royal Society2 (2010). Among
many awards that he received are the Dirac Medal (1990), the Max Plank
Medal (1996), the Euler Medal3 (2002), the Henri Poincaré Prize (2006), the
Shaw Prize (2008, jointly with V. Arnold), and the Lomonosov Medal (2013).

More details on the life and work of L.D. Faddeev can be found on the
website: faddeev.com. Acknowledgements: The author is grateful to L.
Takhtajan for his comments, suggestions, and for sharing the draft of his article
on L. Faddeev written for the Royal Society. He is also grateful to F. Smirnov
for his multiple helpful comments.

Nikolai Reshetikhin
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Scattering and solitons. Three selected papers

The reader may find a comprehensive review of Faddeev’s work in [1].
Here we give a short summary of three of his papers with the common theme
being spectral theory and quantum scattering theory. The first one is based
on his PhD thesis. The second one is his fundamental work on solution to
the three-body problem in quantum scattering. The last one is his paper
with V.E. Zakharov where they show that the KdV equation is an infinite
dimensional integrable Hamiltonian system. The results of the first paper
became instrumental here.

We did not even try to give here an overview of Faddeev’s, perhaps,
most fundamental discovery, the Faddeev–Popov gauge fixing [12]. This
revolutionary paper is at the heart of all computations physicists do with the
standard model. Nobel Prize laureate (1957 Prize) C.N. Yang in the foreword
to selected works of Ludwig Faddeev wrote: “Many people, including myself,
felt that Faddeev should have shared the Nobel Prize of 1999 with t’Hooft
and Veltman.” See [1] for details about this and other works, which are not
mentioned here.

1. One dimensional Schrödinger equation. In his Ph.D. thesis Properties of
the S-matrix for scattering by a local potential, published in [4], L. Faddeev gave
a complete study of the direct and inverse spectral map for one-dimensional
Schrödinger operator:1

L = − d2

dx2
+u(x). (1)

If the potential is sufficiently smooth and rapidly decaying at infinity L has two-
folded absolutely continuous spectrum and a finitely many isolated eigenvalues.
He proved that the potential u(x) can be uniquely recovered from so-called
scattering data. To define it consider Jost solutions to the differential equation
Lf = k2f :

f1(x, k) = eikx + o(1), x → ∞, f2(x, k) = e−ikx + o(1), x → ∞.
These solutions can be analytically continued to the upper half-plane. Transi-
tion coefficients are defined by the relation

f2(x, k) = a(k)f1(x, −k) + b(k)f1(x, k),

1 We use nonstandard notation L for the Schrödinger operator having in mind applica-
tions to KdV equation, where it is known as the Lax operator.
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which holds when k ∈R, where |a(k)|2 = 1 + |b(k)|2. The coefficient a(k) has
analytical continuation to the upper half plane and the following dispersion
relation holds:

a(k) = exp

(
1

2πi

∫ ∞
−∞

ln(1− |r(k)|2)

k− p dp

) N∏
l=1

k− iκl
k+ iκl

(2)

where r(k) =
b(k)

a(k)
is called reflection coefficient, a(k) on the left side is

understood as the limit from the upper half plane, and zeros iκl of a(k)
define the discrete spectrum of L with eigenvalues −κ2

l . The scattering
data is a triple (r(k), κl, ml) where r(k) and κl are as above and ml is the
normalization constant defined as (ml)

−1 = ia′(iκl)/cl, where cl is such that
f1(x, iκl) = clf2(x, κl).

In his PhD Faddeev proved that potentials u(x) satisfying the condition∫ ∞
−∞

(1 + |x|)|u(x)|dx < ∞

are in bijection with the scattering data, i.e. with the triples (r(k), κl, ml).
This is an elegant result, but its true significance emerged only with

the study of soliton equations (see the review of Faddeev’s paper on the
integrability of the KdV equation).

2. Three body problem in quantum mechanics. One of the most known works
of L.D. Faddeev is the solution to the scattering problem for three particles in
quantum mechanics [5], [6], [7], [8].

Consider the differential operator, quantum Hamiltonian, describing the
system of three interacting non-relativistic quantum particles with positions
x1,x2, and x3 ∈R3:

H = H0 +V12 +V23 +V13. (3)

It acts in the Hilbert space L2(R9). Here Vij = vij(xi − xj) are pairwise
interaction potentials and

H0 = − 1
2m1

∆1− 1
2m2

∆2− 1
2m3

∆3

is the Hamiltonian describing non-interacting particles. It is assumed that the
potentials vij(x) are smooth and rapidly decaying.

The problem of three-particle scattering consists of describing the spectrum
of the operator H and constructing the scattering operator, which is a unitary
operator mapping incoming scattering states to outgoing scattering states.
This unitary operator, known as the S-matrix is the central object in physical
applications.

In simple cases, in particular, in two-body scattering, the continuum
spectrum of H coincides with the continuum spectrum of H0. As a result, the
resolventR(z) = (H− z)−1 is determined by an integral equation with compact
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kernel. This means iterations rapidly converge and numerical methods may be
applied. In this case the S-matrix is defined as

S = (U+)∗U−

where U±= limt→±∞ e
itHe−itH0 are the wave operators.

The difficulty of the three-particle scattering problem is that the continuum
spectrum of H differs from the one for H0. This happens because there are
directions in (R3)×3 where the potential V12 +V23 +V13 is not decaying at
infinity.

After separating coordinates and momenta of the center of mass, Fad-
deev passed to the coordinates (k12, p3) that are Fourier conjugate to
(x1 − x2, x3). Another natural choice of coordinates on the same space is
(k23, p1), and (k31, p2). Denote them by all by (kα, pα). Assuming that the
total momentum is zero, we have k12 =p1−p2 etc. In the center of mass, after
the Fourier transform, the Hamiltonian H becomes an integral operator acting
in L2(R6) (with coordinates in R6 being any pair (kα, pα)) with H0 being the
operator of multiplication by

Ĥ0 = − 1
2m1

p2
1− 1

2m2
p2

2− 1
2m3

p2
3 =

k2
α

2mα
+

p2
α

nα
.

Here the right side of the equality does not depend on which α to choose,
and mα, nα can be easily computed in terms of m1, m2, m3. The operator of
multiplication by Vα(xα) becomes the integral operator with the kernel

Vα(kα, pα; k′α, p′α) = vα(kα−k′α)δ(pα−p′α).

Assume now that the spectrum of each of the two-particle Hamiltonians
−∆i/mi −∆j/mj + Vij have only one point of discrete spectrum (one eigen-
value) and no virtual levels at the lower end of the continuous spectrum (the
first assumption is not essential, see [8] for details).

Faddeev provided a tour de force study of the resolvent R(z) = (H− z)−1

of the Hamiltonian (3). By subtracting the first three singular iterations, and
by proving that the resulting equation has compact kernel, he derived integral
equations for the resolvent (for the T-operator defining resolvent) which can be
solved by iterations (since the kernel is compact). These equations are known
as Faddeev equations in three particle scattering. Using these equations he
proved the following.

1) The projection of H to the subspace of absolutely continuous spectrum
in L2(R6) is unitary equivalent to the operator

Ĥ = Ĥ0⊕ Ĥ12⊕ Ĥ31⊕ Ĥ23

where Ĥ0 is as above and

Ĥα =
p2
α

2mα
−κ2

α.
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Here −κ2
α is the eigenvalue of the corresponding two-particle Hamiltonian and

the operators H0, Hα act as multiplication operators in

H = H0⊕H12⊕H31⊕H23

where H0 =L2(R6) are functions of (kα, pα) (different choices of α are related
by simple coordinate transformations) and Hα =L2(R3) are functions of Rα.

2) He also proved the existence of building blocks U±0 : H0→L2(R6) and
U±α :Hα→L2(R6) for wave operators. Here L2(R6) is the three-particle Hilbert
space with separated center of mass and H0, Hα are as above. The operators
U±0 , U±α are defined as

U±0 = lim
t→±∞

eitHJ0e
−itĤ0 , U±α = lim

t→±∞
eitHJαe

−itĤα ,

Here J0 identifies H0 with the original L2(R6) and Jα embed Hα isometrically
in L2(R6):

(Jαf)(kα, Rα) = φα(kα)f(Rα).

Here φα(kα) is the Fourier transform of the eigenfunction of the corresponding
two-particle Hamiltonian.

Faddeev defined the wave operators U± :H→L(R6) as

U± = U±0 ⊕U±12⊕U±31⊕U±23

and he proved that they satisfy the right identities

(U±)∗U± = I, U±(U±)∗ = I−P, HU± = U±Ĥ

where P is the projection to the discrete spectrum. The scattering matrix is
then defined as

S = (U+)∗(U−).

Faddeev’s equations are complicated, nevertheless, due to the of the compact-
ness of the kernel, the iterations converge efficiently and these equations can
be solved numerically. This makes it an important tool for studying few body
systems in quantum physics.

Another important work of Faddeev on scattering theory is the solution
to the inverse scattering problem for the three-dimensional case. In [17],
he gave necessary and sufficient conditions for reconstructing the potential
from scattering data. In 1965 Faddeev wrote another influential paper [9]
where he applied perturbation theory for continuous spectra to the Laplace–
Beltrami operator on Γ\H when the fundamental domain is non-compact but
has finite hyperbolic area. In this case the space of L2(Γ\H) decomposes
naturally into two subspaces. The first subspace consists of functions having
zero integrals over all horocycles in Γ\H. On this subspace the Laplace–
Beltrami operator has a discrete spectrum [20]. Faddeev described spectral
properties of this operator on the second, more complicated, subspace. This
was a very influential work, with many important followup results, for example
[10], [16], see [3] for the detailed description.
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3. KdV equation as an integrable Hamiltonian system. In a paper published
in 1967 Gardner, Green, Kruskal, and Miura (GGKM) discovered that the
Cauchy problem for the famous Korteweg-de Vries (KdV) equation

ut = 6uuxx +uxxx = 0, u(x, t)|t=0 = u(x), x ∈ R (4)

can be solved by the composition of direct and inverse spectral problems for
(1). They found that if the initial data u(x) is regarded as the potential in the
differential operator (1), the evolving of the spectral data according to (4) is
particularly simple:

r(k, t) = r(k)e8ik3t, κl(t) = κl, ml(t) = mle
8κ3
l t. (5)

In 1968 P. Lax gave an elegant explanation for this fact, observing
that the KdV equation can be written as linear evolution of the operator
L=− ∂2

∂x2
+u(x, t):

∂L
∂t

= [L, A]

where A= 4 ∂3

∂x3
− 6u

∂u(x, t)

∂x
− ∂u(x, t)

∂x
.

In 1971 L. Faddeev and V. Zakharov [14] explained the evolution (5) of
spectral data by showing that the KdV equation is an infinite dimensional
Hamiltonian integrable system, and the spectral data are the action-angle
variables.

They observed that the bracket

{F , G} =

∫ ∞
−∞

d
dx

(
δF
δu(x)

)
δG
δu(x)

dx (6)

defines a Poisson structure on the space M of smooth rapidly decaying
functions u. Functions satisfying condition

∫∞
−∞ u(x)dx= c form a symplectic

leaf in the Poisson spaceM.
The KdV evolution can be written as a Hamiltonian flow onM:

ut = {H, u}, H =

∫ ∞
−∞

(
1
2
u2
x +u3

)
dx.

Faddeev and Zakharov computed the symplectic form

Ω =

∫ ∞
−∞

Du(x)∧
(∫ x

−∞
Du(y)dy

)
dx (7)

corresponding to the bracket (6) in terms of spectral data for (1):∫ ∞
0

dP (k)∧ dQ(k)dk+
N∑
l=1

dpl ∧ dql. (8)

Here and in (7)D refers to the differential forM written either in terms of u(x)
or in terms of scattering data. Because of the bijection proved by Faddeev in his
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thesis, this is the same differential written in different “coordinates.” Variables
(8) are defined as

P (k) = 4k
π

ln |a(k)|, Q(k) = argb(k), pl = 2κ2
l , ql = ln cl. (9)

The function a(k) is determined by scattering data through the dispersion
relation (2), b(k) = a(k)r(k). Formulae (7) and (8) show that variables
P (k), Q(k), pl, ql are Darboux coordinates for the symplectic form Ω. Here the
results obtained by Faddeev in his Ph.D. thesis were instrumental in identifying
(8) and (7).

Infinitely many Poisson commuting Hamiltonians that are local differential
polynomials in u can be derived by solving the Riccatti equation

σx +σ2−u+ 2ikσ = 0

in power series σ(x, p) =
∑

n≥1

σn(x)

(2ik)n
. Faddeev and Zakharov showed that the

functionals In =
∫∞
−∞ σn(x)dx Poisson commute and can be expressed only in

terms of P (k) and pl. In particular

H =

∫ ∞
−∞

σ5(x)dx = 8

∫ ∞
0

k3P (k)dk− 32
5

N∑
l=1

p
5/2
l .

Thus, they proved that (4) is a completely integrable infinite dimensional
Hamiltonian system with the action variables P (k), pl, and with the angle
variables Q(k), ql.

Thus, the KdV equation inspired the first example of an infinite-dimensional
integrable system. Many others followed, such as Nonlinear Schrödinger and
the Sine-Gordon equation. The Sine-Gordon equations, [15] became the first
example of a two-dimensional relativistic classical field theory, which is an
infinite-dimensional Hamiltonian integrable system.

4. Quantum field theory, integrable systems, and quantum groups. From the
very beginning the study of soliton equations for L. Faddeev was a step towards
constructing non-perturbative models of quantum field theory. The first
significant progress in this direction was made in the semiclassical framework,
the results were summarized in [18]. But the most important developments
came from the “fusion” of inverse problems in soliton equations, Bethe ansatz,
and from the realization that Baxter’s work on the exact solution of 6- and
8-vertex models is intrinsically related to C.N. Yang’s work on factorized
scattering. Many important developments originated from this period; in
particular, it led to the emergence of quantum groups, which, after Drinfeld,
became one of the fundamental objects in representation theory.

A comprehensive overview of all Faddeev’s work was done in [1], see also
[2] [3], as well as the website http://faddeev.com/.

Nikolai Reshetikhin

http://faddeev.com/


440 Scattering and solitons. Three selected papers

Bibliography

[1] Takhtajan, L.A. et al. (2018) Scientific heritage of L.D. Faddeev. Survey of
papers, Russian Math. Surveys, 72(6), pp. 977––1081 (Uspekhi Mat. Nauk,
72(6), pp. 3––112).

[2] Reshetikhin, N., Semenov-Tian-Shanski, M. and Takhtajan, L. (2017) L.D.
Faddeev (March 23, 1934–February 26, 2017), IAMP News Bulletin, October
2017, pp. 29––45.

[3] Takhtajan, L. (2022) Ludwig Dmitrievich Faddeev. 23 March 1934 – 26
February 2017, Biographical Memoirs of Fellows of the Royal Society. Available
at: https://royalsocietypublishing.org/doi/10.1098/rsbm.2022.0003.

[4] Фаддеев, Л.Д. (1958) О связи S-матрицы и потенциала для одномерного
оператора Шредингера, Докл. АН СССР, 121(1), с. 63––66; English transl.:
(1959) On the relation between the S-matrix and potential for the one-
dimensional Schrödinger operator, Soviet Phys. Dokl. 3, pp. 747––751.

[5] Фаддеев, Л.Д. (1960) Теория рассеяния для системы из трех частиц,
ЖЭТФ, 39(5), с. 1459––1467; English transl.: (1961) Scattering theory for
a three-particle system, Soviet Physics. JETP, 12, pp. 1014––1019.

[6] Фаддеев, Л.Д. (1961) Строение резольвенты оператора Шредингера
системы трех частиц с парным взаимодействием, Докл. АН СССР, 138(3),
с. 565––567; English transl.: (1961) The resolvent of the Schrödinger operator
for a system of three particles interacting in pairs, Soviet Phys. Dokl., 6,
pp. 384––386.

[7] Фаддеев, Л.Д. (1962) Строение резольвенты оператора Шредингера
системы трех частиц и задача рассеяния, Докл. АН СССР, 145(2),
с. 301––304; English transl.: (1963) The construction of the resolvent of the
Schrödinger operator for a three-particle system, and the scattering problem,
Soviet Phys. Dokl. 7, pp. 600––602.

[8] Фаддеев, Л.Д. (1963) Математические вопросы квантовой теории
рассеяния для системы трех частиц, Тр. МИАН СССР, 69. М.–Л.: Изд-во
АН СССР, с. 3––122; English transl.: Mathematical aspects of the three-
body problem in the quantum scattering theory, Israel Program for Scientific
Translations, Jerusalem. New York: Daniel Davey & Co., Inc., 1965.

[9] Фаддеев, Л.Д. (1967) Разложение по собственным функциям оператора
Лапласа на фундаментальной области дискретной группы на плоскости
Лобачевского, Тр. ММО, 17. М.: Изд-во Моск. ун-та, с. 323––350; English
transl.: (1967) Expansion in eigenfunctions of the Laplace operator on the
fundamental domain of a discrete group on the Lobachevskij plane, Trans.
Moscow Math. Soc., 17, pp. 357––386.

[10] Lax, P.D. and Phillips, R.S. (1967) Scattering theory, Pure Appl. Math., 26.
New York––London: Academic Press.

[11] Lax, P.D. and Phillips, R.S. (1976) Scattering theory for automorphic func-
tions, Ann. of Math. Stud., 87. Princeton: Princeton Univ. Press.

[12] Faddeev, L.D. and Popov, V.N. (1967) Feynman diagrams for the Yang–Mills
field, Phys. Lett. B, 25(1), pp. 29––30.

[13] Кулиш, П.П., Фаддеев, Л.Д. (1970) Асимптотические условия и инфра-
красные расходимости в квантовой электродинамике, ТМФ, 4(2),
с. 153––170; English transl.: (1970) Asymptotic conditions and infrared

https://royalsocietypublishing.org/doi/10.1098/rsbm.2022.0003


Scattering and solitons. Three selected papers 441

divergences in quantum electrodynamics, Theoret. and Math. Phys., 4(2),
pp. 745––757.

[14] Захаров, В.Е., Фаддеев, Л.Д. (1971) Уравнение Кортевега–де Фриса —
вполне интегрируемая гамильтонова система, Функц. анализ и его прил.,
5(4), с. 18––27; English transl.: (1971) Korteweg–de Vries equation: a com-
pletely integrable Hamiltonian system’, Funct. Anal. Appl., 5(4), pp. 280––287.

[15] Захаров, В.Е., Тахтаджян, Л.А., Фаддеев, Л.Д. (1974) Полное описание
решений ‘sine-Gordon’ уравнения, Докл. АН СССР, 219, с. 1334––1337;
English transl.: (1974) Complete description of solutions of the ‘sine-Gordon’
equation, Soviet Phys. Dokl., 19(12), pp. 824––826.

[16] Павлов, Б.С., Фаддеев, Л.Д. (1972) Теория рассеяния и автоморфные
функции, Краевые задачи математической физики и смежные вопросы
теории функций. 6, Зап. науч. сем. ЛОМИ, 27. Л.: Наука, Ленингр.
отд., с. 161––193; English transl.: (1975) Scattering theory and automorphic
functions, J. Soviet Math., 3(4), pp. 522––548.

[17] Фаддеев, Л.Д. (1974) Обратная задача квантовой теории рассеяния. II,
in Итоги науки и техн. Сер. Соврем. пробл. мат., 3. М.: ВИНИТИ, с.
93––180; English transl.: (1976) Inverse problem of quantum scattering theory.
II, J. Soviet Math., 5(3), pp. 334––396.

[18] Faddeev, L.D. and Korepin, V.E. (1978) Quantum theory of solitons, Phys.
Rep., 42(1), pp. 1––87.

[19] Drinfeld, V.G. (1987) Quantum groups, in Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986). Providence, RI:
Amer. Math. Soc., pp. 798––820.

[20] Гельфанд, И.М., Граев, М.И., Пятецкий-Шапиро, И.И. (1966) Теория
представлений и автоморфные функции, in Обобщенные функции, 6. М.:
Наука.; English transl.: Representation theory and automorphic functions,
PA––London––Toronto: W.B. Saunders Co., Philadelphia.



Andrei Alexandrovich Suslin (1950––2018)

Andrei Alexandrovich Suslin was born on December 27, 1950, in Leningrad.
His father, Alexander Ivanovich, was a well-known engineer — a specialist on
ships’ power systems who worked at the Krylov State Research Center. His
mother, Alexandra Nikolaevna, was an engineer-economist. Andrei’s math

skills were notable at a young age. Influenced
by their father, all the children in Andrei’s
family enjoyed solving mathematical Olympiad
problems and puzzles.

When he was only in the 6th grade, Andrei
won the Leningrad City Olympiad for the 6th,
8th, and 10th (last) grade levels. In 8th grade
he became the winner of the Russian National
Mathematical Olympiad. In 1967 he won a
gold medal at the International Mathematical
Olympiad. In 1972 he graduated from the
Department of Mathematics and Mechanics at
Leningrad State University (LSU).

In 1974, Suslin got his Ph.D. degree (under
the supervision of M.I. Bashmakov) and already
in 1977 he defended his Habilitation for the con-
firmation of the Serre conjecture on projective

modules over polynomial rings From 1969 to 1975, A.A. Suslin taught at the
specialized boarding school №45 at LSU. From 1973 to 1977 he worked at LSU,
and from 1977 to the end of his life he worked at the Leningrad Branch of the
Steklov Institute. From 1994 onwards he was also a professor at Northwestern
University (in Evanston, U.S.).

A.A. Suslin was invited to the International Congress of Mathematicians
three times as a lecturer in 1978, 1986, and 1994 (including as a plenary lecturer
in 1986).

In 1980, A.A. Suslin was awarded Lenin’s Komsomol Prize for solving
Serre’s conjecture; in 2000, he received the Cole Prize in algebra for his work
on motivic cohomology, particularly for his and V. Voevodsky’s paper Bloch–
Kato conjecture and motivic cohomology with finite coefficients, where they
developed the basis of the theory of motivic cohomologies.



Andrei Alexandrovich Suslin 443

Only in the algebraic K-theory of fields and algebraic manifolds he proved
the following:
• The Serre conjecture about projective modules over polynomial rings

(1976);

• Quillen–Lichtenbaum conjecture about K-theory of algebraically closed
fields (1983);

• A stable version of the Milnor conjecture about cohomologies with finite
coefficients of a general linear group (1984);

• Bloch–Kato conjecture for n= 2 (the so-called Merkurjev–Suslin theo-
rem) (1982);

• Positive solution (with M. Wodzicki) of the Karoubi conjecture which
follows from an excision property for C∗-algebras in K-theory (1990, 1992);

• For every smooth algebraic variety X, a complex of free abelian groups
was invented, which is now called the Suslin complex;

• The construction of the Suslin complex was a key part of the basis of the
theory of motives, created by V. Voevodsky;

• In the case of a complex algebraic variety, the given complex, taken
modulo n, calculates singular homologies of the given variety with coefficients
Z/nZ.

A. Suslin jointly with E. Friedlander constructed a spectral sequence,
starting with motivic cohomologies, and converging to Quillen’s K-groups; this
solves an A. Beilinson’s conjecture.

Additionally, A.A. Suslin has a number of other remarkable results, includ-
ing:
• B.B. Venkov’s and D. Quillen’s theorem (the detection theorem for finite

groups) was extended to all finite group schemes over a field;

• B.B. Venkov’s theorem on finite number of generators of a cohomology
algebra of a finite group was extended (with E. Friedlander) to the case of
finite group schemes over a field;

• He and E. Friedlander proved that for a finite group scheme over a field,
its cohomology with coefficients in a finite-dimensional rational module is a
finitely generated module over a ring of the cohomology of the given group
scheme.

It’s worth mentioning that the Merkurjev–Suslin theorem was unofficially
regarded as the best result in algebraic K-theory for a long time. Another
interesting fact is that French mathematicians in IHES gave a standing ovation
to Suslin’s proof of the Quillen–Lichtenbaum conjecture, breaking all the
unwritten traditions.
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A.A. Suslin almost always chose to attack iconic problems, a trait truly
reflecting his personality. However, if you met him on the street or in a cafe, it
would be hard for anybody to recognize him as a distinguished mathematician.

It’s difficult to exaggerate A.A. Suslin’s contribution to the development of
modern algebra. In St. Petersburg, A.A. Suslin created a school of algebraic
K-theory and motivic cohomology well-known around the world.

Some of my personal memories (a very tiny portion). Suslin was my advisor
starting from my 3rd year at university and through postgraduate school
(1981––1984) at the Steklov Institute in Leningrad. But what’s more important
to me is that he was my mentor in mathematics throughout my whole life. With
these memories, I would like to remember some stories that strongly highlight
Suslin’s character as a mathematician and as a person.

In the ‘90s I would often go to Suslin (the Steklov Institute, room 306) and
ask him what he was currently working on. Suslin would take a cup of tea
and formulate what he was interested in. Then, he would start developing his
approach to the problem on the blackboard, right in front of me.

If something went wrong, he would take a break for a cigarette or a cup
of tea, and having thought some more, would propose a new approach. Every
time, before doing any calculations, he would predict the passing result(s) or
the general line of thought. Only after that would he start to check, let us say
the first non-trivial case, through calculations.

And if this did not work (which was often the case), he would take another
break, and repeat the process again and again. These conversations, which
I would for the most part listen attentively to, lasted for one, two, or three
hours. Several times they lasted up to four or five hours, with the mentioned
breaks, during which we drank tea with bagels.1 Thanks to those interactions, I
adopted his method, which Suslin never explained to me, but which I witnessed
him systematically use.

I will allow myself to repeat what Suslin told me, as I think this is the
most important thing (technical things aside) that I learned from him. First,
using all your prior experience, you have to formulate what it is that you want
to prove. Then, you must firmly believe that the formulation is, in principle,
true. Only after that should you start looking for an approach. As we all know,
when trying to solve meaningful problems, such heavy technical (or essential)
difficulties arise that we start to give up on and lose interest in the problem.

We must know a priori that the expected result is conceptually true.
I learned this principle from Suslin. It is possibly the most important method
that he taught me.

1 The Russian version of the bagel is called a bublik. These bread rolls are similar to
each other, but a bublik has a larger hole in the middle and the dough is more dense. It is
eaten more as a snack than as a meal in Russia.
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From a purely social perspective, it is thanks to Suslin that I met so many
great mathematicians. Suslin’s basic principle for interacting with others, as
he told me, was: “I try not to offend anyone.” And he was very successful at it.

Now I want to share a characteristic story that shows why Suslin would
systematically attack specific, prominent problems. Once, we were sitting in
his apartment in Evanston and drinking wine. “Vanya,” he asked me, “what
problem should we work on?” I thought about it for a moment and proposed
something. After a short silence, Suslin said:

No, that’s boring. Let’s prove the Hodge conjecture, or Grothendieck’s
standard conjectures.

That was Suslin. He was not interested in lifting a big rock or even a very big
one, his true calling was to move a cliff. To me, this story clearly explains why
he always took on specific prominent problems.

Having come back from the French institute IHES in 1983, Suslin joyfully
told me: “Vanya, I proved the Quillen–Lichtenbaum conjecture the night before
my lecture at IHES. Right after the lecture, Gabber generalized my result, and
a few days later I used his generalization to prove that

KQ
i (C; Z/n) = Ktop

i (pt; Z/n) = Z/n,

if i is even and it is the zero group if i is odd. As a result, one gets the stable
Milnor–Friedlander conjecture, specifically that H∗(GL(C); Z/n) is the ring
of polynomials Z/n[c1, c2, c3, . . .].” In other words, cohomologies with finite
coefficients of the classified space of the group GL(C) seen as a discrete group,
are the same as cohomologies of the classified space of the group GL(C) seen as
a Lie group. After this introduction, Suslin sketched out a proof of his famous
rigidity theorem in just half an hour.

In 1999 at MPI in Bonn, Suslin asked me and Sergei Yagunov: “What are
you working on?” We answered that we wanted to extend his rigidity theorem
for K-theory to Voevodsky’s cobordisms. For that, we know approximately how
to build Gysin homomorphisms for Voevodsky’s cobordisms. To our surprise,
this inspired Suslin so much that he discussed this problem with us for three
days. On the third day he came and said: “All you need to prove are the three
properties of Gysin homomorphisms:

(1) The base change property,

(2) Covariant functoriality,

(3) Normalization (id∗= id).

Having these three properties, you can prove the rigidity.” This story really
illustrates Suslin’s style in mathematics.

In January of 1994, Suslin came into his office at Steklov Institute (room
306) holding someone’s preprint. “This is brilliant work,” he said. It was
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the hand-written version of Voevodsky’s famous preprint on presheaves with
transfers. Immediately, Suslin started giving us a lecture about it and ended
up reading four lectures, which were each 4 hours long. That preprint was
fundamental for Voevodsky’s construction of his triangulated category of
motives, which ultimately led Voevodsky to proving the Milnor conjecture.

Once in 1995, I asked Suslin to explain Quillen’s trick to me, the one created
to prove Gersten’s conjecture. Within 5 minutes, Suslin was able to explain the
essence of the trick to me and formulate the principle that in such problems,
you always have to start with the closed fibre. The same applies to Voevodsky’s
trick. For the following 20 years, I used this absolutely basic principle to solve
many problems on my own and with co-authors. The next day, Suslin and I
proved the Grothendieck–Serre conjecture for the group SL1,A, where A is an
Azumaya algebra. After that day, I started to work intensively on proving the
Grothendieck–Serre conjecture, and Suslin returned to developing the theory
of motivic cohomologies with Voevodsky.

Let me stop here. But I have to say: I will always fondly remember my
great teacher and distinguished mathematician, Andrei Alexandrovich Suslin.

Ivan Panin



Remarkable Theorems of Andrei Suslin

Andrei Suslin (1950––2018) was deeply involved in both the formulation
and the solution of many of the most important questions in algebraic K-
theory. His own evolution from a “pure algebraist” led to a partnership
with Vladimir Voevodsky in building the edifice of motivic cohomology. The
interweaving of arithmetic algebraic geometry and algebraic K-theory, seen
frequently in Andrei’s work, has contributed much to the development of both
fields. Later in his career Andrei made important contributions to the modular
representation theory of finite group schemes.

Andrei was primarily a problem solver, a mathematician confident that
clearly formulated questions could be answered by “direct, imaginative attack.”
Time and again, Andrei introduced new techniques and structures in order to
solve challenging problems. Although he did not incline to “theory building,”
he has left us considerable theory with which to continue his efforts. For many
years, Andrei’s clear, precise, careful approach to fundamental questions placed
him as the “final judge” of many current efforts at the interface of algebraic
geometry and K-theory. Andrei freely shared his ideas, gave brilliantly clear
lectures, encouraged the work of others.

In what follows, we mention a selection of Andrei’s many fundamental
results.

In 1976, Andrei and Daniel Quillen independently and essentially simulta-
neously proved the following theorem, known as “Serre’s Conjecture”; prior to
their proofs, the most famous problem of commutative algebra was to find a
proof of this Quillen–Suslin Theorem.

Theorem 1 ([7]). Let S be a finitely generated polynomial algebra over a field F ,
so that S =F [x1, . . . , xd] for some d. Then every finitely generated projective
S-module P (i.e., any direct summand P of some free S-module M) is a free
S-module.

The key step in Andrei’s proof is the following elementary algebraic fact
designed for his goal: Let R be a commutative ring and set f = (f1, f2)∈R[t]⊕2

(not necessarily unimodular). Let c ∈ R ∩ (f1R[t] + f2R[t]). Then for any
commutative R-algebra A and a, a′ ∈ A such that a ≡ a′ modulo cA, we
have that f(a) and f(a′) are conjugate by an element of GL2(A). This is
a remarkable piece of ingenuity!
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The following theorem of Andrei’s (with A. Merkurjev) provided a quantum
leap in the study of the Brauer group. Both the statement and proof served as a
launching pad for explorations of the relationship between algebraic K-theory
and motivic cohomology.
Theorem 2 ([5]). Let F be a field, m an integer coprime to ch(F ) and ξ ∈F a
primitive m-th root of unity. Then the norm residue homomorphism

h2 = hF ,2 : K2(F )/mK2(F ) → H2(F , µm), {a, b} 7→ C(a, b)ξ

is an isomorphism, where H2(F , µm) = Br(F )[m] ⊂ Br(F ) consists of all
elements whose exponent divides m. In particular, the subgroup Br(F )[m] of
the Brauer group is generated by the classes of cyclic algebras C(a, b)ξ for
a, b∈F×.

Theorem 2 quickly led to various new algebro-geometric results, typically
guided by Andrei. For example, the following theorem of Andrei on “Serre’s
Conjecture II” paved the way for the work of many others, which eventually
established that a simply connected semi-simple classical algebraic group
over a field F of cohomological dimension ≤ 2 has no non-trivial principal
homogeneous spaces over F .
Theorem 3 ([12]). Let F be a field of cohomological dimension ≤ 2. Then the
reduced norm homomorphism Nrd : A× → F× is surjective for every central
simple algebra A over F of degree n.

This implies that Serre’s Conjecture II is valid for simply connected groups
of inner type An−1.

In the past 50 years, many mathematicians have tried to understand the
cohomology of BG(F ), the classifying space of the infinite discrete group G(F )
of F -valued points of an algebraic group G over an algebraically closed field
F . Andrei proved the conjectured value for G=GL∞; we formulate Andrei’s
result in terms of algebraic K-theory.
Theorem 4 ([8, 9]). Let F be an algebraically closed field and let n be a positive
integer invertible in F . Then

K2i(F , Z/n) = Z/n, K2i+1(F , Z/n) = 0, i ≥ 0.

Andrei’s proof is very elegant, introducing the now fundamental notion of
Suslin rigidity. When he presented the proof in Paris, there was a standing
ovation.

The domain and range of the norm residue homomorphism in various forms
were the subject of many of Andrei’s impressive calculations involving Milnor
K-theory on the one hand and norm varieties on the other. At its core, this is
a study of quadratic forms and division algebras.

The algebraic K-groups K∗(F ) of a field F (or a more general ring) are
defined in terms of homotopy groups which are notoriously difficult to compute.
The Milnor K-groups KM

∗ (F ) of a field are defined more simply in terms of
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generators and relations; only for i≤ 2 does KM
i (F ) =Ki(F ). The following

theorem of Andrei nevertheless gives a close relationship between KM
∗ (F ) and

K∗(F ).
Theorem 5 ([10]). If F is an infinite field, then the natural composition

KM
n (F ) → Kn(F ) → Hn(GL∞(F )) ' Hn(GLn(F )) → KM

n (F )

is multiplication by (n− 1)!.
The following theorem by Andrei and Yu. Nesterenko identifies Milnor K-

theory with the diagonal summands of (bigraded) Bloch higher Chow groups
for a field F . This theorem played an important role in the later development
of motivic cohomology by Andrei and V. Voevodsky as in [15].
Theorem 6 ([6]). For any field F , the Milnor K-theory KM

∗ (F ) of F is naturally
isomorphic to the diagonal part of Bloch’s Higher Chow groups,

KM
n (F ) ' CHn(F , n).

When challenged to prove an excision property for C∗-algebras, Andrei in
a paper written with M. Wodzicki proved the following theorem applicable to
any ring.
Theorem 7 ([16]). For any ring A, A satisfies excision in rational K-theory if
and only if AQ is homologically unital (in the sense of an explicit chain complex
associated to A is acyclic).

One achievement of etale cohomology as developed by M. Artin and
A. Grothendieck was to provide a functorially algebraic method of computing
the (singular) cohomology with finite coefficients of the underlying analytic
space of a complex algebraic variety X. Using the Suslin complex Sus∗(X) of
an algebraic variety X over an algebraically closed field (involving maps from
algebraic simplices to symmetric powers of X) and Suslin rigidity, Andrei and
V. Voevodsky proved the following beautiful result giving a more “elementary”
algebraic interpretation of H∗(X(C)an, Z/n).
Theorem 8 ([14]). If X is a quasi-projective variety over C, then the natural
map

πi(Sus∗(X), Z/n) → Hi(X(C)an, Z/n), i ≥ 0,

is an isomorphism.
Andrei worked closely with V. Voevodsky to prove fundamental properties

of V. Voevodsky’s motivic cohomology theory. The joint paper with Voevodsky
[15] represented a major advance, connecting Milnor K-theory to motivic
cohomology via Bloch’s higher Chow groups. In particular, the following
theorem by Andrei and V. Voevodsky played a central role in Voevodsky’s
proof of first the Milnor Conjecture and then the more general Bloch–Kato
Conjecture.
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Theorem 9 ([15]). Let F be a field and ` a prime invertible in F . Then the
norm residue homomorphsm

hn : KM
n (F )/`KM

n (F ) → Hn(F , µ⊗n` )

is an isomorphism if and only if for all q with q≤n
Hp
M (X, Z/`(q)) ' Hp

et(X, µ⊗q` ), p ≤ q; Hq+1
M (X, Z/`(q)) ↪→ Hq+1

et (X, µ⊗q` ).

One justification of the formulation of Bloch’s higher Chow groups (shown
by Andrei and V. Voevodsky to agree with Voevodsky’s motivic cohomology)
is their relationship to algebraic K-theory as expressed in the motivic spectral
sequence of the next theorem. Andrei was responsible for providing definitive
proofs of this spectral sequence.
Theorem 10 ([3], [11]). Let X be a smooth quasi-projective variety over a field.
Then there is a strongly convergent spectral sequence

Ep,q2 = Hp−q
M (X, Z(−q)) ⇒ K−p−q(X).

Finite group schemes arise in the study of the representation theory of
finite groups and algebraic groups as well as occur in aspects of arithmetic
algebraic geometry. Together with E. Friedlander, Andrei proved the most
fundamental result about their cohomology. In doing so, they introduced a
new form of functor cohomology developed expressly for this theorem and now
of much independent interest; for an early example, see the paper by Andrei
and others [1].
Theorem 11 ([2]). Let G be a finite group scheme over a field k. Then H∗(G, k)
is a finitely generated algebra over k.

Moreover, if M is a G-module (i.e., a k[G]-comodule) finite dimensional
over k, then H∗(G, M) is a finitely generated module over H∗(G, k).

Among other results concerning the cohomology and representation theory
of finite group schemes, we mention the following geometric description by
Andrei (with C. Bendel and E. Friedlander) of the cohomology of infinitesimal
group schemes over a field (i.e., group schemes whose coordinate algebras are
finite-dimensional local rings). For the r-th Frobenius kernel G=G(r) of one
of the classical groups SLn or Sp2n or On (associated to a symmetric bilinear
form on kn), this theorem implies that SpecH∗(G, k) is homeomorphic to
the variety of r-tuples of p-nilpotent, pairwise commuting elements of the Lie
algebra of G.
Theorem 12 ([13]). Let G be an infinitesimal group scheme over a field k of
height r. Then the morphisms Ga(r)→G of group schemes over k from the r-th
Frobenius kernel of the additive group Ga to G (i.e., the height r, 1-parameter
subgroups of G) are the k-points of an affine scheme Vr(G).

There is a natural map of finitely generated commutative k-algebras
ψ : k[Vr(G)] → H∗(G(r), k)

that induces a homeomorphism on prime ideal spectra.
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The following theorem of Andrei (joint with E. Friedlander and J. Pevtsova)
is the basis for new invariants of finite group schemes, the formulation of
modules of constant Jordan type, and a novel construction of algebraic vector
bundles. The key ingredient is an ingenious argument of Andrei’s about
the maximality of ranks occurring among linear combinations of commuting
nilpotent square matrices.

The theorem concerns π-points of a finite group scheme G over a field k,
namely flat maps αK : K[t]/tp→KG factoring through an abelian subgroup
scheme CK ↪→GK with K/k an arbitrary field extension. Here, KG is the
linear dual of the coordinate algebra K[GK ]. There is a natural equiva-
lence relation on π-points of G defined in terms of G-modules, and the set
of equivalence classes admits a scheme structure Π(G) (also defined using
representations of G) such that Π(G) ' ProjH∗(G, k).
Theorem 13 ([4]). Let G be a finite group scheme, M a finite dimensional G-
module, and αK :K[t]/tp→KG a π-point of G which represents a generic point
of Π(G). Then the Jordan type of αK(t)∈KG viewed as a nilpotent operator
on MK depends only upon the equivalence class of αK as an element of Π(G).

Eric M. Friedlander1 and Alexander Merkurjev2
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Life and death of mathematicians
in Petrograd 1918––1923
(The Committee for Improving
the Wellfare of Petrograd Scientists)

H.G. Wells, who visited Petrograd1 in September––October in 1920, wrote:

For the rest of the arts, for literature generally and for the scientific
worker, the catastrophe of 1917––18 was overwhelming. [...] For the
scientific man at first the Soviet Government had as little regard as the
first French revolution, which had “no need for chemists.” These classes
of worker, vitally important to every civilised system, were reduced,
therefore, to a state of the utmost privation and misery. [1, p.34].

Wells further wrote in his book of essays entitled Russia in the Shadows:

Nowhere in all Russia is the fact of that crash so completely evident
as it is in Petersburg. [2, p. 316]

1919, 1920, and 1921 entered Russian history as years of unspeakable terror
and hunger. A Civil War was under way. Railroad transportation almost
ceased operating. The delivery of food to the city had practically come to a
standstill. “Masses of people are dying,” O.I. Vendrich, a resident of Petrograd,
wrote in her diary during the winter of 1919, [3]. The academician Mikhail
Ivanovich Rostovtzeff, in his article Wake: In Memory of Murdered Friends
and Colleagues published in exile in early 1920, wrote:

From time to time I receive letters from my teachers, colleagues and
students who have fled the Bolshevik paradise. [...] And each letter
contains, first and foremost, a Synodikon — dry lists of those who
died, all featuring the same marginalia: died of starvation, execution
by firing squad, committed suicide. [4, p. 431]

The Bolshevik government allocated almost no funds to support the sci-
entific community, considering it politically hostile. In May of 1918, the

1 Petrograd — that is how St. Petersburg was called during 1914––1924.



456 Life and death of mathematicians in Petrograd 1918––1923...

Petrograd Soviet2 issued a decree on rationing by class3. Under this decree,
the residents of Petrograd were divided into four categories according to the
type of bread ration card they received. But even the ration given to workers
(the first category) amounted to only 20% of the calories needed to sustain life.
Scientists were allotted rations in the third category.

Historian N.I. Kareev, Corresponding Member of the Academy of Sciences,
in his memoir The Things I Lived Through and Experienced, describes the
ration as follows:

Bread was allotted only by card in small quantities, sometimes amount-
ing to as little as a quarter or even an eighth of a pound a day. [5,
p. 272]

At that time, pretty much the only person in Petrograd to whom the
intelligentsia could turn to for help was Maxim Gorky4. Thanks to his efforts,
on December 13th, 1919, the board of Narkompros5 decided to create a special
committee with the goal of improving the welfare of scientists. On December
23rd, 1919, Sovnarkom6 issued a decree that established a special increased
food ration for scientists. In order to implement the decree of the Council of
People’s Commissars, the Executive Committee of Soviet Petrograd passed a
resolution to establish the Petrograd Committee for the Improvement of the
Welfare of Scientists — PetroKUBU. Maxim Gorky was appointed chairman.
The decision to create the committee was published on January 13th, 1920, in
the newspaper Petrogradskaya Pravda, the Petrograd edition of Pravda. Thus,
the Petrograd KUBU was created, saving thousands of lives for the country
and for science.

On January 15th, the Petrograd Krasnaya Gazeta responded to the creation
of KUBU with an article by A. Bolotin entitled “How Scientists’ Welfare Will
Be Improved.” The author informed the readers:

The Committee for the Improvement of the Welfare of Scientists
compiled lists of those involved in science, who will be allocated
increased food rations. The list included only 1,800 scientists. Only
scientists of exceptional merit were included in the list, as the number

2 Petrograd Soviet was an elected revolutionary committee.
3 “The catastrophic food situation spawned the idea of a “class ration” in order to exclude

some of the city’s inhabitants from the rationed supply. The state took upon itself the
obligation to feed only the workers: this included not only laborers, but also those who were
registered as employed. Production and socio-political support for the new system depended
on them.” [24]

4 Maxim Gorky (1868––1936) was a Russian Soviet writer, playwright, public figure,
journalist, and publicist. He was nominated for the Nobel Prize for Literature in 1918,
1923, 1928, and 1933.

5 Narkompros, People’s Commissariat for Education RSFSR (Narkompros RSFSR,
NKP), was a governmental committee of the RSFSR, which in the 1920s––1930s was in
charge of nearly all cultural and humanitarian sectors: education, science and others.

6 Sovnarkom (Council of People’s Commissars of the RSFSR) was the government of
Soviet Russia from 1917––1946.
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of individuals engaged in scientific activity in Petrograd is around 4,000
presently. [...]
The committee then decided to organize a “house of scientists” in
the former palace of Vladimir Alexandrovich7. In one of the wings
overlooking the former Millionnaya Street, some of the halls will be
lit and heated, where scientists will be able to conduct their research.
These halls will thus become scientists’ heated shelters. [...] One
can imagine, that thanks to these shelters, our scientists will become
accustomed to collectivist forms of living.

KUBU’s main task at that time was to supply scientists with food rations,
although KUBU did not have its own food supply. It was possible to get them
only from the Petrokommuna8. For this reason, PetroKUBU had to submit
a list of all scientists, indicating their position, scientific achievements, and
where they worked, by February 1st. Scientists were required to write up their
own biographies and append a list of their scientific works.

The KUBU archive contains handwritten documents compiled by Nadezhda
Nikolayevna Gernet, Nikolai Maksimovich Günter, Ivan Matveevich Vino-
gradov, as well as a petition by Academician Markov requesting that the
young scientist Vinogradov (born in 1891) be granted an academic ration,
and a review of his research by Yakov Viktorovich Uspensky. The archive
also contains the autobiographies of Alexander Vasilievich Vasiliev, Abram
Samoilovitch Besicovitch (along with Vladimir Andreevich Steklov’s approval),
and other mathematicians in Petrograd. Owing to the efforts of KUBU, food
provisions for Petrograd scientists improved, but things were still difficult
because the Petrokommuna could not provide all the food requested.

In May 1920, a delegation of English trade unions, arrived in Soviet Russia.
Bertrand Russell, a famous mathematician and philosopher who later won the
Nobel Prize, arrived with the delegation. Later on, in his autobiography, he
reminisced:

On one occasion in Petrograd (as it was called) four scarecrows came
to see me, dressed in rags, with a fortnight’s beard, filthy nails, and
tangled hair. [...] Equally ragged were the Mathematical Society of
Petrograd. I went to a meeting of this society at which a man read
a paper on non-Euclidean geometry. I could not understand anything
of it except the formulae which he wrote on the blackboard, but these
were quite the right sort of formulae, so that one may assume the paper
to have been competent. Never, in England, have I seen tramps who
looked so abject as the mathematicians of Petrograd. [6, p. 193]

7 Grand Duke Vladimir Alexandrovich of Russia, son of Alexander II. The palace was
one of the last imperial palaces built in Saint Petersburg.

8 Petrokommuna was in charge of supplying the city with produce and manufactured
goods, engaged in procurement, production and distribution of products during the Civil
War and the War Communism policy.
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A delegation of English trade unions, May 1920. B. Russel is the third from the right,
in a peak cap. Source [23].

Starting in 1920, PetroKUBU began publishing the journal Science and Its
Practitioners.

Twelve issues were published in three years. Then the journal was closed
down upon denunciation by the chairman of the Petrosoviet, Zinoviev. In the
fourth issue of the 1921 journal, in the article “The Petrograd Society of Physics
and Mathematics”, the journal informed:

During the second meeting on May 15th, in which Yakov Viktorovich
Uspensky introduced the audience to the course he was giving on Non-
Euclidean Geometry at the University, the famous English mathemati-
cian and philosopher Bertrand Russell was present. Russell, who was
travelling with an English workers’ delegation to Russia, introduced
his views on the possibility of experimentally solving questions about
the properties of space. [7, p. 39]

The same article reported:

On May 14th, 1921, a new scientific society was finally organized in the
mathematical office of the Pedagogical Institute at the University [...]
The society was formed as a result of the activities of this seminar,
which began to meet in the office of Prof. Alexander Vasilievitch
Vasiliev, upon his initiative. [...] on May 14th, the board of the society
was created and its main tasks were outlined [...] This was the 21st

meeting of the seminar [...]
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The cover of the journal Science and its Practitioners.

The meetings of the seminar that founded the Society of Physics and
Mathematics began on the 20th of March, 1920, on the day of Isaac
Newton’s death [...] [7, pp. 38––39]

Meanwhile the 12th meeting of the seminar (on November 23rd, 1920) was
dedicated to the memory of Evgraf Stepanovich Fedorov.

Prof. Boldyrev and Bogomolov highlighted the scientific achievements
of the famous scientist in their presentations: the former — in the
field of crystallography and crystal chemistry, the latter — in higher
geometry, to which Fedorov contributed [...] broad, overarching ideas.
[7, p.39]
During a number of meetings [...] specialized mathematical papers
were reviewed and published as part of the 42nd volume of the journal
Acta mathematica (Yakov Davidovich Tamarkin, Abram Samoilovitch
Besicovitch, Grigorii Mikhailovich Fichtenholz). Incidentally, Levi-
Civita’s extraordinarily important memoir on the three-body problem,
is reviewed. [...]
The organized society began its activity with two meetings on May 25th

and 26th. During the first meeting, two presentations were given: A.V.
Vasiliev on “Geometry of the World”, and Academician Petr Petrovich
Lazarev on “The Ion Theory of Excitation.” Two presentations were
given during the meeting on May 26th, the centennial of the memorial
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day of the famous Russian thinker Pafnuty Lvovich Chebyshev. A.V.
Vasiliev reviewed his work on the history of mathematics in Russia,
A.S. Besicovitch delivered a presentation on a topic from probability
theory related to Chebyshev’s works. [7, pp. 39––40]

Pafnuty Lvovich Chebyshev was honored by the Academy of Sciences in
May of 1921. Sergey Fyodorovich Oldenburg, the permanent secretary of the
Academy, wrote about this in the article “The Russian Academy of Sciences
in 1921.” The article was published as part of the first issue in 1922 of the
journal Science and its Practitioners.

In the same article, S.F. Oldenburg reports that “over the past year, the
Academy has established three new research institutes” [8, p. 8]. One of them
is the Institute of Physics and Mathematics. The author further informs that:
“The Institute of Physics and Mathematics participates in the international
edition of Leonard Euler’s work” and “the remarkable posthumous work of
Alexander Mikhailovich Lyapunov.” [8, p. 9]

Over time, the academic food ration provided more calories and became
more varied. At Gorky’s request, scientists who had families were given
additional products.

During this time, the Soviet press featured caricatures of scientists, aca-
demic rations, and Gorky. Gorky annoyed Lenin and the Soviet government
with his constant solicitude for the Russian creative and scientific intelligentsia.
Without a doubt, the leaders of the state knew these caricatures were being
published. The statements alleging the government’s concern for scientists that
were later made are largely hypocritical.

On August 13th, 1922, a caricature of the academic ration appeared in the
appendix to the Krasnaya Gazeta.

A pig and a donkey near a trough filled with academic rations.

In 1923, the artist Manuel Andreev, famous during the beginning of the
20th century, was tasked by Soviet authorities to produce a series of satirical
postcards “Everyday Life in Petrograd”, [9]. One of the postcards with the title
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“Ivan Ivanovich got his ration” caricatured an intellectual wearing glasses and
homemade shoes on bare feet, carrying bulky sacks and a bag with groceries.

Ivan Ivanovich got his ration.

It’s well-known that at the end of 1921 Lenin forced M. Gorky to go abroad
under the pretext of getting treatment for his medical conditions. But a
caricature of the writer that appeared in the media depicted Gorky leaving the
Russian Soviet Federative Socialist Republic (RSFSR) of his own accord. At
the border checkpoint, the writer swapped his Russian bast shoes for European
shoes.

Scientists were having challenges with more than just obtaining food. At
one of the meetings of the General Assembly of the Academy of Sciences, the
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Caricature of Gorky.

application of Academician Andrei Andreyevich Markov was considered, who
for lack of shoes could not attend the meetings of the Academy. During the
meeting, the decision was made to ask Academician Alexander Evgenyevich
Fersman to ask KUBU about the possibility of obtaining footwear. At KUBU’s
meeting on April 26, 1921, Fersman petitioned for Academician Markov to be
provided shoes [10, p. 31]. Professor Nikolai Maksimovich Günther had to make
a long and persistent effort to have his wife’s only pair of shoes repaired. There
were only a few craftsmen working at the KUBU shoe shop, and the waiting
list for shoe mending extended for months. Korney Ivanovich Chukovsky9

recorded in his diary how his then assistant Maria Benkendorf told him that

9 Korney Ivanovich Chukovsky (1882––1969) was a Russian Soviet poet, publicist, literary
critic, translator, literary scholar, children’s writer, and journalist.
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...when people kneel in church, it’s very curious to behold the entire
collection of holes on the soles of their shoes. Not a single sole without
a hole! [11, p. 259]

The housing issue was also acute at that time. Random strangers were
moved into scientists’ apartments, making them more crowded. Other housing
afflictions included forced relocations and evictions. The KUBU archives
contain a petition submitted to PetroKUBU by Prof. Günther on February
9, 1920. The house where Günther lived was seized by the Society for the
Disabled. The tenants were asked to immediately vacate their apartments
but were not allowed to take their belongings. Prof. Günther’s petition was
supported by PetroKUBU and he was allowed to remain in his home, although
he had to move to another wing of the house.

The ways in which the housing issue was solved were reflected in the printed
propaganda of the Soviet authorities as well. One of the postcards in the
“Children Playing the Revolution Game” series, was titled “Seizure of the
Premises.” The postcard shows children trying in every way possible to keep
invaders out of their home.

Postcard “Seizure of the Premises”.

KUBU protected its members from military and labor conscription. Hard
physical labor, especially during the cold season, could mean sickness and
death for the hungry and emaciated scientists. In the first issue of the journal
Science and its Practitioners for 1921 in the section Personalia in the list of
deceased scientists (178 names in total), we find the following record:
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Viliev, Mikhail Anatolievich, was a young, talented astronomer who
already had about a hundred papers to his name. His exceptional
abilities, highly recognized by specialists, guaranteed him a future as
a scientist of the highest rank. He died after catching a cold while he
was digging trenches. His death is one of the most profound modern
tragedies of the life and death of a Russian scientist. [12, p. 35]

The fuel shortage was very acute during the early twenties. The winters
were harsh and there was practically no firewood left in the city. Wooden
houses, fences, and the ends of sidewalks were dismantled for firewood.

The Firewood Crisis.

They did not heat the furnaces in the apartments, but instead got
“burzhuykas”, which served both as a furnace and a kitchen stove.

In his diary, Sergei Grigorievich Eliseyev, a famous Japanese studies scholar,
described Prof. Vladimir Fedorovich Matveev, from the Law Department of
Petrograd University:

It was so cold that when Professor Matveev came home and went to
bed fully dressed, he froze [to death] in his apartment. [13, p. 23]

There were also difficulties in getting the works of Petrograd scientists
published. In the Bibliography of the 3rd issue of Science and Its Practitioners
for 1921, we find the following:
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The burzhuyka stove.

Of Faraday’s testament “to work, to finish, to publish”, only the first
third, “to work”, is feasible for the majority of scientific practitioners
nowadays. It’s the destiny of only a few to finish, and only the lucky
few who manage to publish. After all, in Petrograd alone there are
more than 12,000 pages of unpublished manuscripts, and this number
continues to grow. [14, p. 29].

Nevertheless, some things were still published, in spite of the shortage of
paper, as well as typographical difficulties. Books were published mostly in
small formats.
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In 1921, two works by Alexander Vasilyevich Vasiliev were published in
Petrograd: Mathematics and The Integer: A Historical Essay. In the same
year, Alexander Alexandrovich Ivanov’s book Error Theory and the Method of
Least Squares was published. In 1922, An Introduction to the Non-Euclidean
Geometry of Lobachevsky–Bolian by Yakov Viktorovich Uspensky, and in
1923, his Essay on the History of Logarithms, were published. In 1923, the
book Lectures on Experimental Geometry by the Ukrainian mathematician
Alexander Matveyevich Astryab was published in Petrograd. Other works
were planned for publication.

In the 1st 1920 issue of the journal Science and its Practitioners, readers
were informed:

During the fall semester of 1919, the Pedagogical Institute at Petrograd
University established the Department of Physics and Mathematics...
Professor A.V. Vasiliev is the dean of the Department of Physics and
Mathematics. [15, p. 27––28]

KUBU performed another very important function. From 1919 to 1922,
scientists were constantly arrested in Petrograd. Felix Edmundovich Dzerzhin-
sky10 wrote:

Our professionals are mostly people belonging to bourgeois circles
and mentality. We usually arrest individuals belonging to such social
groups, taking them hostage or placing them in concentration camps
for communal labor. [16, p. 221]

One such arrest was described by S.G. Eliseev, a well-known Japanese
studies scholar of Russian origin who emigrated to America, in his diary:

...When I came to the headquarters of the secret service, I saw
many people from the university... Turns out, we were under arrest
and were hostages. When I asked: “Why did you arrest us?”, the
investigating officer answered, “To shoot you, because you’re hostages.”
[13, p. 17––18]

The prominent Russian philosopher Nikolay Onufriyevich Lossky wrote in
his book Reminiscences: Life and the Philosophical Journey :

In the summer of 1922, a new storm was closing in over the in-
telligentsia, of which none of us had an inkling of. Zinoviev, the
chief of St. Petersburg and the Northwestern region, reported to
Moscow that the intelligentsia was beginning to rear its head. He
wrote that different factions of the intelligentsia are beginning to create
professional journals and societies; they aren’t working in concert, but
will, in time, unite and become a force to be reckoned with. Therefore,

10 Felix Edmundovich Dzerzhinsky (1877––1926), Head of several People’s Commissariats,
founder and head of the VChK. The VChK is a special security agency of the Soviet
government.
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the Moscow government decided to arrest prominent scientists, writers,
and public figures throughout Russia; and this was done on August
16th, 1922. [17, p. 237]

Lossky remembered this arrest:

[...] the government knew that we were not involved in political
activity. [...] [But] it was already decided that we would be sentenced
to exile abroad. At this time, the Bolshevik government was seeking de
jure recognition by the Western European states. Individuals whose
names and activities were known in Europe were arrested, and the
Bolsheviks apparently wanted to show that their regime was not a
barbaric despotism. It is said that Trotsky suggested this very measure
of exile abroad. [17, p. 238––239]

Trotsky’s statement on this subject is well-known:

We expelled these people because there was no reason to shoot them,
but it was impossible to tolerate them. [18, p. 266]

Lossky further recalls:

After the interrogation I was taken to a large room where there were
about fifty people under arrest [...] Among them were Karsavin,
Lapshin, the professor of mathematics Selivanov and others from our
group. Apparently, Selivanov was arrested for his “bourgeois” method
of teaching mathematics to engineers. In his lectures, Selivanov not
only provided the mathematical formulas used in the engineering
profession, but also the mathematical proofs behind them. At this
time, the Bolsheviks came to the conclusion that an engineer should
know the formulas but is not required to know the mathematical
reasoning behind them. [17]

Students, rising to the heights of their professions, are getting rid of
“excessive ballast.” Liberation from ballast probably implied liberation from
professors like Selivanov, who taught mathematics “not in the red way.” [19]

The FSB archives contain VChK-GPU documents where there is a note by
F.E. Dzerzhinsky regarding the petition of party member Vladimir Ivanovich
Nevsky: “Nevsky is petitioning for the release of Selivanov. We are against
this.” [20, p.328––329]. KUBU also petitioned for the 67-year-old mathemati-
cian Selivanov, but to no avail.

On October 10, 1922, Dmitri Fyodorovich Selivanov filed a letter to the
GPU Presidium:

I have now begun teaching at the University... Additionally, I am
preparing two manuscripts for publication, one on an Advanced Course
for Higher Algebra and the other on Projective Geometry. My wife, a



468 Life and death of mathematicians in Petrograd 1918––1923...

Lunacharsky with his students in a hot air balloon. During their meetings, the student
body has spoken out in favor of relieving universities of unnecessary ballast. — Isn’t
that a lot, comrade? — It’s okay, Anatoly Vasilyevich, the more ballast we throw out,
the higher we will rise.

mathematics teacher at the Rabfak11 of the University, and I, would
be terribly hindered in our work by being exiled abroad. This whole

11 In 1919, for the first time in the history of the University of Petrograd (Leningrad),
a new and unusual institution — the Workers’ Faculty (Rabfak, or Rabochiy Fakultet) —
was established. It was supported by the new Soviet authorities at the university, in their
struggle against the “old” students and professors. Many people were educated through the
Rabfak in 1922––1929, some of whom later became prominent scientists and statesmen. It
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The magazine Red Lights, 1922. “A group of White Guard intelligentsia has been
exiled abroad.”

hassle would be expensive and would take up a lot of our time. I don’t
know whether I should sell my last possessions in order to have enough
money for this eventuality [...] I’m really afraid that I’ll suddenly be
told to board a steamship in two or three days, but that I won’t have
the money or the permission to bring my linen and clothes along with
me. I would not want to come to Germany without the necessary
things and ask German mathematicians for alms. [20, p. 329]

On October 14, 1922, Selivanov was ordered to leave Russia, and on
November 16, 1922, he and a group of scientists sailed from Petrograd on
the German steamship Prussia.

The Soviet press responded to the expulsion of scientists from Russia with
yet another cartoon.

KUBU also cared about scientists’ health. As early as June, 1920, KUBU
scientists were first accepted as patients to the sanatorium in Detskoye Selo12.
In 1921, Konstantin Alexandrovich Posse, professor of mathematics at Pet-

is an example of the proletarianization of higher education as promulgated by the Soviet
authorities after 1917. (Translated and adapted from an article in Russian, [25].)

12 Detskoye Selo, known in pre-revolutionary times as Tsarskoye Selo, is a town 15 miles
south of the center of St. Petersburg. Under Stalin, the town was renamed Pushkin and is
still known to this day by that name.
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rograd University, was treated there. In October 1922, the Internat for the
Elderly was opened at KUBU. The mathematicians Julian Vasilyevich Sochocki
and K.A. Posse, professors at Petrograd University, lived the last years of their
lives in this residential home. Dmitri Ivanovich Mendeleev’s wife spent her
final years in this residential home as well [21, p. 13]. In 1921, Gorky arranged
for Petrograd scientists to be treated at the CEKUBU Gaspra13 sanatorium in
Crimea. In May, 1926, Academician Vladimir Andreevich Steklov vacationed
and was treated there. Thanks to the Petrograd Committee for Improving the
Welfare of Scientists, scientists were able to survive through trying times, and
the lives of many outstanding figures in Russian science were saved. According
to archival data, 80 Petrograd mathematicians received food rations from
KUBU. Many of them could not have survived those harsh and hungry post-
revolutionary years without these rations. Here are the names of scientists who
benefitted from KUBU:

1. Adamov, Aleksei Alekseevich, m.14, Professor at the Polytechnical
Institute.

2. Akimov, Pyotr Vasilyevich, Theory of Mechanics, Professor at Petro-
grad Mining Institute.

3. Angert, David Nikolaevich, m., and Education Studies, Professor.
4. Bashinsky, Viktor Vladimirovich, Methods of calculating statistical

uncertainty of systems, Professor at Turkestan University.
5. Besicovitch, Abram Samoilovitch, m., Professor, 3rd Pedagogical

Institute of the University of Perm.
6. Bentkovsky, Iosif Iosifovich, mechanics, Professor, strengths of materials.
7. Bilibin, Alexander Yakovlevich, m., Professor at the 2nd Polytechnical

Institute.
8. Bogomolov, Stepan Alexandrovich. m., Professor at the 1st, 2nd, and

3rd Pedagogical Institute.
9. Borisov, Evgeny Vasilyevich, m., lecturer at the Technical Institute of

Petrograd University.
10. Borisov, Alexander Alexandrovich, m., lecturer at the Institute of

Agriculture.
11. Boyarchuk, Vladimir Prokofievich, m., stayed at the Department of the

3rd Pedagogical Institute.
12. Budaevsky, Sergei Andreevich, m., mechanics, instructor at the Engi-

neering Academy.
13. Vasiliev, Alexander Vasilyevich, m., Professor at the University.
14. Vinogradov, Alexander Mikhailovich, m., instructor at the Institute of

the National Economy.

13 Gaspra is a region in Yalta City on the Black sea in Crimea.
14 m. — mathematician.
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15. Vinogradov, Ivan Matveevich, m., Professor at the University’s 1st
Polytechnical Institute.

16. Vulikh, Zakhar Zakharovich, m., Professor at the 1st Pedagogical
Institute.

17. Gavrilov, Alexander Feliksovich, m., Professor at the 1st Polytechnical
Institute.

18. Gelyvikh, Pyotr Avgustovich, m., instructor at the Artillery Academy.
19. Gernet, Nadezhda Nikolaevna, m., Professor at the 1st Pedagogical

Institute and at the University.
20. Girman, Sergei Nikitich, m., independently.
21. Glagolev, Ivan Pavlovich, m., instructor at the 1st Pedagogical Institute.
22. Godytsky-Tsvirko, Alexander Mordarevich, Theory of mechanics,

instructor at the Institute of Railway Engineers.
23. Gratsiansky, Ivan Ivanovich, Methodology of mathematics, Professor

at the Institute of Early Childhood Education.
24. Grodsky, Georgy Dmitrievich, m., Professor at the Artillery Academy.
25. Günter, Nikolai Maksimovich, m., Professor at the University.
26. Davydov, Ivan Ivanovich, m., instructor at the Institute of Geography.
27. Di-Segni, Nikolai Konstantinovich, m., Dean of the Institute of Fire

Engineering.
28. Egupov, Vladimir Andreevich, m. and theoretical mechanics, Professor

at the Academy of Fine Arts.
29. Juravsky, Andrei Mitrofanovich, m., Professor at the Institute of

Mining.
30. Ivanov, Ivan Ivanovich, Professor at the 1st Polytechnical Institute.
31. Ikornikov, Yuri Vasilievich, m. and geographer, instructor at the

Technological Institute.
32. Kavun, Ivan Nikitich, Methodology of mathematics, instructor at the

3rd Pedagogical Institute.
33. Kargin, Dmitry Ivanovich, m., graphics, Professor at the Institute of

Fire Engineering.
34. Kompaneits, Pyotr Andreevich, m., Professor at the 3rd Pedagogical

Institute.
35. Kondratyev, Vladimir Andreevich, m., Head of Department at the

National Pedagogical Museum.
36. Konyuchenko, Ivan Timofeevich, m., instructor at the Institute of

Astronomy.
37. Koyalovich, Boris Mikhailovich, m., Professor at the University’s

Technological Institute.
38. Krechmer, Vasily Avgustovich, m., instructor at the Institute of

Railways Engineers.
39. Kulisher, Alexander Ruvimovich, m., Professor at the 2nd Pedagogical

Institute.
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40. Lipin, Nikolai Vyacheslavovich, m., instructor at the 3 rd Pedagogical
Institute, and at the University.

41. Lyush, Vasily Vladimirovich, m., instructor at the Technological
Institute.

42. Malis, Leonid Germanovich, m., physics, instructor at the Technological
Institute.

43. Markov, Andrei Andreyevich, m., Academician at the Academy of
Sciences.

44. Melikov, Konstantin Venediktovich, m., instructor at the Institute of
Railways Engineers.

45. Meshcherski, Ivan Vsevolodovich, mechanics, Professor at the 1st
Polytechnical Institute.

46. Mitropol’sky, Aristarkh Konstantinovich, mechanics, applied mathe-
matics, instructor at the Technological Institute.

47. Mikhel’son, Nikolai Semyonovich, m., Professor at the Technological
Institute.

48. Naryshkina, Ekaterina Alekseevna, m., stayed at the Department of
Mathematics at Petrograd University.

49. Penionzhekevich, Karl Boleslavovich, m., physics, instructor at the
Institute of Photography.

50. Petrovich, Sergei Georgievich, m., Professor at the 1st Pedagogical
Institute.

51. Pirozhkov, Mikhail Vasilyevich, m., instructor at the Worker’s Depart-
ment at the University.

52. Polosukhina, Olga Andreevna, m., Professor at the University.
53. Posse, Konstantin Alexandrovich, m., Professor at the University.
54. Radtsig, Alexander Alexandrovich, mechanics and mathematics, 1st

Polytechnical Institute.
55. Selivanov, Dmitry Fedorovich, m., Professor at the University.
56. Sigov, Isaaky Alexandrovich, m., instructor at the 2nd Pedagogical

Institute.
57. Sinakevich, Vladimir Ivanovich, m., instructor at the Academy of

Agriculture.
58. Smirnov, Vladimir Ivanovich, m., Professor at the University.
59. Smirnova, Yulia Andreevna, m., Professor at the University.
60. Sochocki, Yulian Vasilyevich, m., Professor at the University.
61. Steklov, Vladimir Andreevich, m., Academician at the Academy of

Sciences.
62. Sultan-Shakh, Ekaterina Semyonovna, m., physics, instructor at the 1st

Pedagogical Institute.
63. Tamarkin, Yakov Davidovich, m., Professor at the University.
64. Tovstoles, Flavion Pavlovich, m., applied mathematics at the Military

Engineering Academy.
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65. Tokmachyov, Sergey Mikhailovich, m., meteorology instructor at the
Forestry Institute.

66. Umnov, Boris Ivanovich, m., instructor at the 3rd Pedagogical Institute.
67. Uspensky, Yakov Viktorovich, m., Professor at the University.
68. Federman, Alexander Karlovich, m., Professor at the Institute of

Agronomy.
69. Filippov, Vladimir Mikhailovich, m., instructor at the 1st Polytechnical

Institute.
70. Fichtenholz, Grigorii Mikhailovich, m., Professor at the University.
71. Fridman, Alexander Alexandrovich, m., Mechanics, Head of the

Department of the Physical Observatory.
72. Kharitonovich, Boris Georgievich, Mechanics, instructor at the Poly-

technical Institute of the Naval Academy.
73. Tsinzerling, Dmitry Petrovich, m., Head of the Mathematics Collection

of the Pedagogical Museum.
74. Tsytovich, Nikolai Platonovich, m., artillery, professor at the Artillery

Academy.
75. Shatrov, Vladimir Dmitrievich, Applied mathematics, Professor at the

Institute of Civil Engineering.
76. Shmulevich, Pyotr Kornivovich, m., instructor at the Institute of

Photography and Photographic Technology.
77. Shokhat, Yakov Alexandrovich, m., Professor at the 2nd Pedagogical

Institute.
78. Shokhor-Trotsky, Semyon Ilyich, m., instructor, researcher at the

Institute of Agriculture and at the Institute of Optics.
79. Shchukin, Nikolai Leonidovich, Theoretical and applied mechanics,

Professor at the 2nd Polytechnical Institute.
80. Krylov, Aleksey Nikolaevich, m., Professor, Academician at the

Academy of Sciences.

In a letter to Academician S.F. Oldenburg, Gorky wrote:

I observed how the creators of Russian science endured the excruciating
days of hunger and freezing cold with such modest heroism and stoic
courage, and I saw how they worked and saw how they died...
I think the world was given a magnificent lesson on stoicism by Russian
scientists with how they lived and worked during the years of the
Intervention and the Blockade. Their story will teach the world about
this time of suffering with the pride of a Russian man writing these
simple words to you. [22, p. 260]

Afterword: Firstly, I would like to provide some historical background
information. The text mentions the Entente blockade of Petrograd. The
Entente, also known as the Triple Entente, was a military alliance between
England, France and Russia that aimed to contain the Central Powers, which



474 Life and death of mathematicians in Petrograd 1918––1923...

comprised Germany, Austria and Italy. During World War I, the Entente was
a combatant force against the Central Powers bloc. The roots of this alliance
can be traced back to an agreement between England, the United States and
France, signed in 1897, known as “The Gentlemen’s Agreement.” The purpose
of the agreement was to keep Germany in check. After the end of World War I,
the Entente supported anti-Bolshevik governments and blockaded many major
Russian ports. One important reason that the Entente was doing this was
the hope of restoring the large loans Russia had made to England and France
before and during the First World War.

The text also mentions the House of Scientists, the former palace of
Prince Vladimir, on the Neva River embankment. Grand Duke Vladimir
Alexandrovich, was born on April 22, 1847 in St. Petersburg and died on
February 17, 1909 in St. Petersburg. He was the third son of Emperor
Alexander II and Empress Maria Alexandrovna. He actively participated in
government affairs and was a member of the State Council (1872). He was also
a senator (1868), adjutant general (1872), and a general of infantry (1880).
Prince Vladimir was the younger brother of Emperor Alexander III.

The Petrokommune, i.e. the Petrograd Workers’ Commune, was an assem-
bly of executive bodies of Soviet power in Petrograd, formed in March 1918 and
lasting until February 1919. Due to the move of the RSFSR government from
Petrograd to Moscow, the Petrosoviet’s decree on March 10, 1918 established
the Petrograd Council of Sovnarkom (SNK) and Commissariats for Food,
Finance, Education, and others as local bodies of power.

Now I would like to add a few historical remarks about the scientists
mentioned in the text. The text mentions Nadezhda Nikolaevna Gernet.
She was born on April 18, 1877 in Simbirsk and died on June 24, 1943 in
Leningrad (during the blockade). Nadezhda Nikolaevna was a Russian and
Soviet mathematician and teacher. She was a student of D. Hilbert, and was
the second woman mathematician in Russia, after S.V. Kovalevskaya, to earn a
doctoral degree. In the lists of scientists who received rations from KUBU, four
additional women scientists are listed: Ekaterina Alekseevna Naryshkina, Olga
Andreevna Polosukhina, Yulia Andreevna Smirnova, and Ekaterina Andreevna
Sultan-Shakh. It would be an interesting line of research to discover the fates
of these women scientists.

A number of scientists supported by KUBU nevertheless didn’t survive the
conditions they found themselves in. One of them was Evgraf Stepanovich
Fedorov, an outstanding crystallographer, mineralogist and mathematician,
Academician at the Russian Academy of Sciences, and Director of the St.
Petersburg Mining Institute (1905––1910). He was 64 years old at the time
of the revolution (he was born on December 10, 1853 in Orenburg). He was
an active scientist, and a man of liberal views. It is noteworthy that he was
a member and active participant of the organization Land and Liberty, but
then withdrew from it, because he did not share the terroristic ideology of the
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organization. Fedorov died of pneumonia at the age of 65, on May 21, 1919,
during a hungry, cold time in Petrograd.

Another scientist who died during this period was Andrei Andreyevich
Markov. The mathematician Andrei Andreyevich Markov (1856––1922) made
major contributions to probability theory, mathematical analysis and number
theory. Markov processes are still one of the main methods for financial
modeling, and they are also foundational to search engines such as Google
and many other applications. Markov died in Petrograd in 1922 at the age
of 66, most likely from starvation.

Of the scientists mentioned in the text who survived those terrible times,
many had brilliant careers abroad, or in the Soviet Union.

In the Soviet Union, the mathematician Ivan Matveyevich Vinogradov
(1891––1983) made important contributions to science. He is recognized for his
seminal results in analytic number theory. He was an academician in the USSR
Academy of Sciences (1929) in the Department of Physics and Mathematics.
In addition, he was also elected as a foreign member of the Royal Society of
London (1942), and was also a member of many other academies. He was
the director of the Steklov Mathematical Institute of the USSR Academy of
Sciences for 45 years.

Alexander Vasilievich Vasiliev (1853––1929) was a mathematician, public
figure, and professor emeritus. Vasiliev initiated the reestablishment of the
Petrograd Mathematical Society in 1921, of which he was chairman until his
move to Moscow in 1923.

Grigory Mikhailovich Fichtenholz (1888––1959) was an outstanding math-
ematician and educator. His three-volume classic Differential and Integral
Calculus, was for many years a staple textbook for students and mathemati-
cians not only in the Soviet Union, but internationally as well. After 1917,
Fichtenholz was active in the Council of Experts at the RSFSR People’s Com-
missariat for Education. He also contributed greatly as head of a committee
for preparing school curricula, and actively supported the organization and
running of mathematical olympiads. Fichtenholz created a special approach
on the theory of functions of real variables and functional analysis at the
Leningrad University’s Departments of Mathematics and Mechanics. In ad-
dition, G.M. Fichtenholz founded the Department of Calculus at Leningrad
University and was its chair until his forced resignation at the height of the
campaign against cosmopolitanism in 1953.

Pyotr Petrovich Lazarev (1878––1942) was another scientist supported by
KUBU, who became an outstanding physicist and an Academician at the
USSR Academy of Sciences (starting from 1917). Lazarev founded the Physics-
Uspekhi Journal (Advances in Physical Sciences) in 1918, and established the
Physics and Biophysics Research Institute, the first of its kind in the Soviet
Union. Lazarev was arrested by denunciation in 1931 and was subsequently
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exiled. During this time, his wife committed suicide. He died at the age of 64
during the Great Patriotic War (World War II) while being evacuated.

Jakob Viktorovich Uspensky (English name: James Victor Uspensky)
(1883––1921), mathematician and academician. Uspensky specialized in num-
ber theory and probability theory. In 1929, Uspensky immigrated to the
United States and secured a position at Stanford University. Soon after, he
renounced his post as an Academician at the USSR Academy of Sciences, and
the authorities accessioned his extensive home library. Uspensky died in 1947
at the age of 63 in San Francisco.

In conclusion, it is clear that the physical and mental hardships of these
trying years had an effect on the life expectancy of these talented individuals.
Out of the eight scientists spotlighted, five of them could have contributed
much more to science if given the extra years. Gernet died at the age of 66,
Fedorov at 65, Markov at 66, Lazarev at 64, and Uspensky at 63. Nevertheless,
there is no doubt that if not for KUBU and the help it afforded scientists, these
statistics could have been even more ominous.

Natalia Malysheva
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The story of mathematicians
repressed by the NKVD in 1941––1942
in besieged Leningrad

The Soviet repressive machine affected the entire population. The com-
munity of mathematicians was not spared. While the Luzin case1 and the
dispersal of the Leningrad Mathematical Society can still be seen as an intra-
academic squabble, in the case of the “Public Safety Committee,” which will
be discussed below, the NKVD dealt with the mathematicians in earnest.

In the winter of 1941––1942, people in the besieged city of Leningrad were
starving to death — by the thousands — every day. The militia and the NKVD2

caught deserters, saboteurs, and gangs of cannibals. The first secretary of the
Leningrad provincial and city party committee, A.A. Zhdanov, was informed
that, according to security services agents, some anti-Soviet individuals were
waiting for the Germans and wanted to cooperate with them. Zhdanov
instructed P.N. Kubatkin, the head of the NKVD Department for Leningrad
and the Leningrad Region, to verify the intelligence and ensure the safety of
the city during the enemy’s blockade. The executors took the order as a signal
to exterminate disloyal sectors of the population by “lawful” methods.

Much has been written about the case of “Public Safety Committee” and
the “The Scientists’ Case” 3 [4], [5], [6], [7], [8]. Especially noteworthy are the
memoirs of G.R. Lorentz who knew the repressed scientists personally [17].
The purpose of the current note is to recreate for the reader the atmosphere
of repressions, the zeitgeist, which was an integral, albeit not always visible,
part of the worldview of Soviet citizens of that period.

The case of the “Public Safety Committee” began with the arrest of Vladimir
S. Ignatowski4, a mathematician, physicist, specialist in optics, and corre-

1 In 1936, Nikolai Luzin, a Russian and Soviet mathematician, was accused of publishing
his major results in foreign journals and being disloyal to Soviet authorities. His department
at the Steklov Institute was closed and he lost all his official positions; however, he was
neither arrested nor expelled from the Academy.

2 The abbreviation stands for “People’s Commissariat for Internal Affairs,” i.e., the
interior ministry.

3 Case No. 3749 (P-29626) (“Public Safety Committee”) and Case No. 555 (P-22163)
(“The Scientists’ Case”) are kept in the archive of St. Petersburg and the Leningrad Region
branch of the FSB of Russia.

4 Also Waldemar Sergius von Ignatowski.
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sponding member of the USSR Academy of Sciences. There were two NKVD
agents in his inner circle, one of whom had had an affair with Ignatowski’s wife
since 1939, and the other, E.F. Merkulov, was a provocateur; in 1945 he was
found guilty of fabricating reports to show his usefulness to the authorities.

Professor Ignatowski and his wife were arrested on 6 November 1941.
Ignatowski (who was beaten up during interrogations) confirmed that he was
a member of the fascist organization “Public Safety Committee” 5 and that he
was waiting for the Germans and wished to join the government they would
establish after taking the city. The testimony of Ignatowski and his wife was
used as a reason to arrest Professors Sergey M. Chanyshev, Vladimir I. Milin-
sky, Konstantin I. Strakhovich, Nikolai A. Artemyev, and a senior engineer
of the Institute of Precision Mechanics Konstantin A. Lyubov. Their bio-
graphies and achievements in mathematics can be found, for example, in [8].

They all incriminated themselves under torture and were sentenced to
death. Vladimir I. Milinsky, Associate Professor of Geometry in the Faculty
of Mathematics and Mechanics of the University, died in prison on 4 January
1942. Konstantin I. Strakhovich’s execution was commuted to ten years in a
penal camp in exchange for false testimony against some Leningrad scientists
who had not yet been arrested. As for the others, the sentences were carried
out.

The second case, Case No. 555 (the case of “The Union of the Old
Intelligentsia”) was created based on the testimony of Strakhovich, which led to
the arrest of Andrey M. Zhuravsky, Director of LOMI6, Nikolai V. Rose, Dean
of the Faculty of Mathematics and Mechanics of the LSU, Boris I. Izvekov,
Professor of the Faculty, Assistant Professors Natalia I. Postoyeva and Boris
D. Verzhbitsky, Professor Nikolai S. Koshlyakov, and many others.

Rose, Izvekov, and Verzhbitsky died during the investigation as a result of
beatings and starvation, at least in part.

Under pressure from investigator Kruzhkov, Nikolai Sergeevich Koshlyakov,
corresponding member of the USSR Academy of Sciences, professor, chair of
the Department of General Mathematics at Leningrad State University and
chair of the Department of Higher Mathematics at LETI, and an employee of
LOMI, testified that a counter-revolutionary organization consisting of eleven
professors and associate professors existed at Leningrad State University. In
1954, Professor Koshlyakov reported the following to the Leningrad Military
District Prosecutor’s Office:

At the very beginning of the investigation, I was warned by Kruzhkov
and others that if I did not plead guilty to the charges brought against
me, they would force me to confess to committing the crime, as they

5 In all likelihood, the investigators named the “organization” after the infamous commit-
tee of the times of the French Revolution, which was the French government in effect, if not
in name, during the Reign of Terror in 1793––94. The naming, it might be assumed, was not
based on historical accuracy but rather on the connotations.

6 Leningrad Branch of the Mathematical Institute of the USSR Academy of Sciences.
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had many means to do so. And when I attempted to refuse to sign the
record made up by Kruzhkov, he beat me up. After that, I no longer
resisted [...] I was in a state of complete exhaustion and no longer had
any will. [2]

On 25 April 1942, all of the accused in the case of “The Union of the Old
Intellectuals” were sentenced to death. On 28 May 1942, the Presidium of
the Supreme Soviet of the USSR commuted the sentence to ten years of labor
camps.

In 1944, Koshlyakov was transferred from labor camp to Moscow where he
worked at the theoretical department of a sharashka 7 — a design engineering
bureau SB-1, which was developing weapons for anti-aircraft defense. He was
released half a year earlier, in 1951, after 9,5 years of imprisonment. Later he
was fully rehabilitated, and in November 1953 he was restored to the rank of
corresponding member of the Academy of Sciences of the USSR by the decree
of the Presidium of the Academy of Sciences. While in detention, he published
one paper, under the pseudonym Sergeev, with the help of I.M. Vinogradov,
S.N. Bernstein, and Y.V. Linnik [10].

Natalya Ivanovna Postoyeva, associate professor of Mathematics and Me-
chanics Faculty of LSU, was arrested on 16 February 1942. In 1957, she
described her tribulations as follows:

...under the pretext of checking passports, some people came to my
apartment and presented me with a search and arrest warrant. The
search was carried out hastily and, having put away the coffee, precious
in those days, and the remains of sugar into a briefcase, they took
me to prison. The investigation began, which turned into torture as
soon as my case was assigned to investigators Ryabov and Kruzhkov.
My testimony against myself and other persons was ripped out by
the terrible cruelty of the investigators, exacerbated by the fact that
these techniques were applied to a person already exhausted by the
blockade, starvation, who was in a state of most severe dystrophy.
The insults, beatings, standing all night on legs swollen from hunger,
sleep deprivation, the cold in the cell, and, perhaps, the most horrible
for a hungry maniac, deprivation of a bowl of soup forced me to sign
the records and give testimony in which every word was perverted by
the investigators, translated into their ‘special language’ which they
replaced the ordinary, human language with. For six months I was
being made into a state criminal, following a pre-prepared plan, and
with no qualms they mocked me and rubbed their hands after every
‘confession’ torn out of my throat. The investigators were present at
the trial and, fearing a repeating of the torture [by the investigators]
more than death, I, having been warned by them in advance, repeated
the memorized words about the crimes I had allegedly committed.
(Note by Associate Professor Postoyeva, 1957, quoted in [1].)

7 A secret research and development laboratory, a number of which used to operate within
the Soviet Gulag labor camp system from 1930 to the 1950s.
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Postoyeva served her ten-year sentence in full and then spent three more
years in exile in Komi. She worked in a sharashka. The academician Vladimir
I. Smirnov interceded on her behalf, “in his personal capacity” [14].

Andrey Zhuravsky, Professor at the Mining Institute and the head of
the Leningrad Department of the Mathematical Institute of the Academy of
Sciences of the USSR, was arrested on 17 February 1942 and was sentenced to
10 years in labor camps. In February 1943 he was transferred to Perm where
he worked in a sharashka (OKB-1728) and in 1944 to prison #1 of Leningrad
(known as Kresty) where he remained until the end of his 10-year sentence,
engaged in the development of artillery weapons. Then, he was exiled to the
city of Syktyvkar, where he managed to find a teaching position at the State
Pedagogical Institute in 1952. He returned to Leningrad the next year, and
in the spring of 1955 was reinstated to his former position as head of the
Department of Higher Mathematics at the Mining Institute [11].

“He hoped that the involvement of such many scientists would make the very
case absurd”

To give the reader a deeper insight into the atmosphere of “The Scientists’
Case,” here are some excerpts from the report describing the circumstances of
the “investigation” into the case of Yevgeny I. Denisov, an associate professor
at the Leningrad Polytechnic Institute:

On the 18 of March 1942, I was unexpectedly arrested by the NKVD
at my apartment. The arrest was preceded by a search with the seizure
of the most valuable possessions and an inventory of property. As it
turned out later, the reason for the arrest was as follows. One month
before my unexpected arrest, my neighbor was arrested, Professor
of Leningrad Polytechnic Institute Leonid Klimenko, whom I had
known only very briefly. He himself told me that, being driven to
despair by hunger and interrogation techniques used by the investigator
demanding “sensational” exposures, he testified that everyone among
his colleagues at the Institute, his acquaintances, and even neighbors
were anti-Soviet persons. I also was included in that list of almost
60 people, all prominent scientists. As Klimenko further told me
before his death (he died of severe exhaustion upon his arrival at
the camp), he did not remember how he compiled the list and how
he characterized particular persons, since he was nearly in a state
of stupor due to the conditions created by the investigation. But
the impulse towards making the list remained in his memory. He
hoped that the involvement of such a high number of scientists ‘would
make the very case absurd’ (Klimenko’s own words) and thus ease
his situation, as the investigators, in his opinion, would not dare to
decapitate the leadership of the entire scientific workforce of Leningrad.
Without a doubt, that action of Klimenko was also the result of a

8 OKB is the Russian abbreviation for Experimental Design Bureau.
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totally disturbed and clearly sick psyche that invariably accompanied
the physical processes of acute exhaustion of the body, which, to a
greater or lesser extent, applied to all of us who endured the first
blockade winter.
Fortunately, a few days before Klimenko’s testimony, an organized and
complete evacuation of the teaching staff of the Institute was carried
out and all the persons listed were already beyond the immediate reach
of the investigative apparatus, which saved them from my fate. As
for me, I could not evacuate with the others because my 75-year-old
mother was ill, and had to wait for her to recover, and a few days later
I was arrested.
After the very first interrogation, I realized how hopeless was the
situation I had been put in. Despite my insistence, no specific charges
were brought against me (I was familiarized with Klimenko’s testimony
at the end of the investigation), instead I was required to confess to
some crimes unknown to me. The investigator Idashkin told me from
the very beginning that he had incontrovertible evidence of my ‘anti-
Soviet’ activity and that I should abandon all hope of breaking away
from his grip, as in his investigative practice there had not yet been
a case of acquittal of a person under investigation and I would be no
exception.
My attempts to prove that due to my very essence, I could not be
an anti-Soviet person were only met with ridicule by the investigators
Idashkin and Mikhailov. Indeed, throughout the winter and up until
the day of my arrest, I worked in my unheated laboratory, alone, volun-
tarily, and without payment, to manufacture medicines for Leningrad
hospitals. Showing my swollen (because of burns and frostbite) hands,
covered with wounds, which was inevitable when working in the
indescribably difficult conditions of 1941––42, to investigators I tried
to convince them how improbable it was for a hostile-minded person
to voluntarily waste what remains of his strength to help his enemies.
In response, I heard that the work was nothing but camouflage for my
anti-Soviet activities.
Further, insisting on interviewing witnesses, I argued that one could
interview many dozens of my acquaintances and colleagues who had
known me for more than 15 years (i.e., my entire conscious life) and
see that not a single one among them would speak unfavorably of me.
The investigators answered that they were not going to interview any
witnesses as positive responses would only mean that I had disguised
myself well my whole life.
Finally, my explanation of the reason for not evacuating with the
Institute staff was also categorically rejected by the investigators, who
stated to me that I had remained in the city “awaiting the arrival of
the Germans,” despite that they had seen my sick mother lying in
bed at home (she died after and as a result of my arrest) and had in
their hands my evacuation documents, which I had received back in
the month of February 1942, when I was going to evacuate as part of
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the so-called “Golden Pool” of Leningrad metallurgists, and could not
do so only because I fell seriously ill with dysentery myself.

[...] The one who came, the deputy head of the Office, who later
turned out to be Kruzhkov, in response to my statement about the
need to charge me with specific crimes, indicating exactly what I had
committed, where, and when, responded that his only advice to me was
to admit to my anti-Soviet activities as soon as possible, as I would do
it anyway sooner or later, but the later, the worse it would be for me.

At the end of the interrogation, seeing as I persisted in not admitting
to any crimes, I was given an ultimatum threatening to involve my
wife to “expose” me. The threat was doubtlessly real to me, for if I,
knowing that I was not guilty, had been arrested, then my wife, too,
could be arrested just as easily. Of course, my wife had nothing to
expose me for, and the enormous power of the threat was not in that
at all. It was in fact that after the evacuation of the Institute staff,
there was no one we knew whose care for the rest of the family we
could hope for in the event of my wife’s arrest.

The only people left in the family in such a case would be my severely
ill and elderly mother and my two children, a four-year-old daughter,
and a ten-year-old son. To leave them on their own in those difficult
conditions, without food, fuel, or help, not only for an unknown period
of time but even for a day, would have been unthinkable, not to mention
the possible prospect of the interrogation awaiting my wife, an example
of which I had already experienced.

Thus, by the actions of the investigators, completely horrific conditions
were created in which further defense of myself and attempts to restore
the truth would prove to be not only pointless, leading only to an
irreversible loss of what was left of my physical strength, but also
immoral, for it threatened the doom of the entire family.

There was no way out of this situation (except the one left by the
investigation). The only thing left to do was to take the most desperate
step to at least temporarily avert the threat hanging over my own life
and the existence of my entire family.

To achieve that, I had to assume the disgusting role of an anti-Soviet
person and, having bought some time, try to find out the real reason
for my arrest so that at the first opportunity (in court, as I believed) I
could reveal all the circumstances that had forced me to make false
statements and prove my innocence. This would make it possible
to save my family because the investigation would no longer need to
involve my wife in “exposing” me, and it would allow me to hope to
save what was left of my strength as well, because the investigators
had promised to improve my diet in case I “confessed,” and, finally, it
would make the conditions of the investigation more bearable. I did
not hesitate long. A crazy fear for the welfare of my family and a sense
of loss of my physical strength forced me to take the first step along
the path that the investigators were pushing me to take.
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[...] It can be said with absolute and unquestionable categorical
certainty that the task assigned to themselves by the investigators was
not at all to establish the truth but rather to create, deliberately and
calculatingly, a spectacular and entirely bogus case. Therefore, they
were not satisfied at all with the statement they tore out of me (i.e.,
that I “admitted” to being “anti-Soviet”). It was necessary to involve as
many people as possible in the case by attributing to them all kinds of
anti-Soviet talk, defeatist sentiments, etc. Investigator Idashkin him-
self gave me examples of such “conversations” and “rumors,” apparently
not having too much faith in my imagination. All I had to do was to
vary their content and invent a setting and the “participants.” As
the investigation demanded more and more serious self-incriminating
confessions, I completely stopped mentioning those who were still alive,
because they could have been at risk of getting into the same situation
I found myself in. Therefore, I began to connect all my subsequent
confessions only to those among my acquaintances who, as of the day
of my arrest, had already died, such as Prof. M.P. Slavinsky (who
died in December 1941), M.G. Oknov (killed in February 1942) and
laboratory assistant, I.I. Popinevsky (died in February 1942). It was
clear to me that this would make it very difficult to expose the falsity
of my testimony in the future, but I had no other choice because I
could not stop giving testimony or limit it. By refusing to give further
testimony, I would have found myself in the position of the first days of
the investigation, but in immeasurably worse circumstances, created
by the forced confession already made.
Attempts to limit my testimony provoked such anger from the in-
vestigator, who was no longer shy about his actions, that to resist
him was tantamount to consciously and quickly destroying the rest
of my physical strength. Thus, during one of the interrogations,
Mikhailov together with Idashkin demanded from me a confession that
I had not evacuated from Leningrad because I was “waiting for the
Germans.” While the matter was limited to making up the most stupid
“conversations,” which, rather than me, the investigation should have
been more ashamed of, I could bear it, albeit with disgust, but to
sign such a “confession” when in reality I was putting all my efforts
into helping to produce medicine for the hospitals in the blockaded
city, did not seem possible to me. After a heavy scuffle that lasted all
night between me and both investigators, I ended up being beaten
by Mikhailov, who hit me several times in the head with his fist.
I had no strength to defend myself and could hardly stand on my
feet, struggling to keep from moaning in unbearable pain all over my
body and in my swollen feet after another many hours of “standing.”
However, the worst torture was sleep deprivation, which Idashkin and
Mikhailov practiced for a long time, summoning me for interrogation
shortly after lights out and releasing me to my cell shortly before
waking up. As it was forbidden to sleep in the cell during the day,
I sometimes went without sleep for a week. This meant that many of
these nights of interrogation turned out to be spent as if in a state
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of delirium, and neither in the days following the interrogation nor
later could I recall the content of the evidence taken from me, or
even the successive course of the interrogation in general. Only vague
fragments of disconnected memories remained in my memory. As a
result of these conditions, I understood that I was powerless to resist
the investigation in any measure and how futile my attempts in this
respect were. From that time on, I decided to sign everything that was
required of me without even bothering to read the evidence written by
the investigators “in my own words.” After this, the atmosphere of the
investigation improved considerably. I was no longer on my feet for
dozens of hours but sat and dozed off until awakened by an investigator
to sign another testimony written by him. I was so tired of everything
I had been through during the investigation that I was not interested
in the contents of the dozens of pages of “my testimony” written out
by the investigators, and I only waited for the end of the investigation
and the beginning of the trial, where I was going to tell everything
that had happened during the investigation and which had resulted in
the emergence of this “testimony.”

[...] On 21 May 1942, Mikhailov came unexpectedly to my solitary
confinement cell, bringing me a packet of tobacco, a white bun, and a
sausage, things one couldn’t even dream of at the time. Unrecognizably
courteous and amiable, he informed me that he had long intended to
visit me, but the complexity of the case prevented him from coming
sooner. He sat down on the bunk and had a friendly conversation with
me about the state of affairs in the city and at the front, and not a
single word concerning my case as if it had never existed and dozens
of hours of abuse and beatings had never happened. Before he left, he
told me in a trusting manner that according to his information, a trial
was about to take place, and that he was quite convinced that I was
an honest Soviet person, despite my testimony, and he felt obliged to
inform me of the following: the investigation knows that my crimes
were not as serious as they are described in my testimony, and in
signing them I acted as a true Soviet person in whom the investigation
now has every confidence. But on my part, I must also prove that I
trust the investigation by fully corroborating my testimony in court.
In such a case, I will be sent to the front, which has already been agreed
upon with the chairman of the court at the request of the investigating
authorities. If I refuse to testify, however, the re-investigation will be
so hard that I am unlikely to be able to survive it.

[...] However, I had no more time to contemplate the situation, which
had been precisely calculated by Mikhailov; a few minutes after he had
left I was summoned to appear in court, and a short time later I had
to answer the president of the Tribunal’s question about my confession
of guilt. I, like everyone else, answered in the affirmative.

Before entering the courtroom, I saw Mikhailov and Kruzhkov strolling
down the corridor arm-in-arm with some military man who turned out
to be the President of the Tribunal. Of course, this demonstration
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of the closeness of the investigators to the members of the court,
calculated to have an appropriate effect on us defendants, was taken
into account by all of us and was probably the main reason why
all the accused confirmed their guilt, especially as the entire staff of
the numerous investigative apparatus was fully present at this and
all subsequent court hearings, closely following our every statement.
Even during the breaks, the investigators did not leave us, apparently
fearing that we might still conspire and lodge a united protest against
the “case” in its entirety. My testimony was to take place the next
morning, so Kruzhkov came to my cell in the evening (bearing the
same “gift” Mikhailov had made in the morning) and repeated what
Mikhailov already said, but the threat was more direct (“If you do not
confirm your testimony, rest assured that you will be shot, and we, i.e.,
the investigation apparatus, will not protect you, although we can do
everything including your release”).
The next day I confirmed my testimony against myself. On 24 May
1942, the court handed down its verdict, and from that moment none of
us saw our investigators, whose moral character was indistinguishable
from that of hardened criminals. (Denisov’s note, 1957, quoted from [1].)

While incarcerated, Denisov was used as a specialist in an NKVD labora-
tory. Denisov was rehabilitated in February 1955, and in October 1955 he was
reinstated as head of the Department of Analytical Chemistry at the Leningrad
Polytechnic Institute [16].

Similar cases are described in numerous memoirs. The reader can recon-
struct the general scheme from the story above. First, the authorities arrest
several people who are linked to a community and who have “dubious” origins
or backgrounds or who have studied or worked abroad. Agents’ reports about
those arrested may already exist, some more fictitious than others. As we shall
see further on, in the eyes of some investigators, being skeptical of the Soviet
authorities was enough to be guilty.

The arrestees are then isolated from one another and accused of partic-
ipating in a counter-revolutionary organization. During interrogations, they
may be threatened with execution and tempted with a pardon in exchange for
a confession. Typically, one of the arrestees breaks and signs a “confession,”
stipulating several new suspects at the prompting of the investigator. Thus,
a second, enlarged circle of suspects is created, which can also be arbitrarily
expanded, as there is no real case, and therefore it has no objective boundaries.

For the convenience of paperwork and reporting, those who confessed were
more or less arbitrarily included in groups with high-sounding goals such
as “killing Stalin” or “overthrowing Soviet power.” Following the peculiar
aesthetics of the time, future “members of the government” and ministers were
identified within the groups. From September 5, 1941, to October 1, 1942,
625 counter-revolutionary groups were uncovered and liquidated, according to
Kubatkin’s report to Zhdanov [3]. Inspections conducted in 1943 and later
showed that many of these cases were falsified.
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However, in the absence of a confession, it was not easy to “file” a new
person for the case. On February 3, 1942, the first Dean of the Faculty of
Optics at LITMO, Professor Vladimir N. Churilovsky, was arrested on charges
of participation in the fascist and espionage organization set up by Ignatovsky
(who had already been shot by that time).

The arrest warrant stated that Churilovsky was being incriminated by the
testimony of the arrested professors Titov, Chanyshev, and Ignatovsky. No
such testimony had been given by the professors [2]. Professor Churilovsky
denied involvement in anti-Soviet activities, despite grueling interrogations and
torture. Churilovsky’s co-workers were questioned but could not testify to
his anti-Soviet activities either. Then Ignatowskaya, who had already been
sentenced to death, was interrogated as a witness. But she, too, testified only
about Churilovsky’s defeatist sentiments, which he allegedly expressed during
a chance meeting.

All these testimonies were denied by Churilovsky during both the interro-
gations and the confrontation with Ignatovskaya on 6 March 1942 [2]. Having
obtained no confession from Churilovsky and thus having no evidence of his
involvement in the anti-Soviet organization of Rose, Koshlyakov, and others,
the investigators put the materials on Churilovsky into a separate case and
then terminated the criminal prosecution (see the Special Inspectorate report
in [1]).

All the scientists convicted in these two cases were rehabilitated in
1954––1955, and the investigators who fabricated the case (Ogoltsov, Zanin,
Altshuller, Podchasov, Kozhemyakin) were expelled from the Communist Party
(CPSU).

A review by the Prosecutor’s Office established that the “Public Safety
Committee” did not exist and that it had been artificially created
by employees of the former NKVD Department of the Leningrad
Region [...] The review also established that the criminal practice of
interrogating prisoners already sentenced to capital punishment had
been widespread in the NKVD of the Leningrad Region. At those
interrogations, by promising to keep the convicts alive, testimonies
against other people that the investigation needed were extorted [...]
25 February 1958 [2].

In 1955, investigator Kruzhkov was expelled from the CPSU and sentenced
by the military tribunal of the 8th Naval Fleet to 20 years of penal labor camps
“for falsification of criminal cases against a group of prominent Leningrad
scientists.” After serving seven years out of twenty, he was released in 1962. We
should mention that Kruzhkov studied at the Mechanical and Mathematical
Department of the Lomonosov Moscow State University from 1934 to 1939.
You can read about this period of his life in the memoirs of his classmate [15]. It
is possible that Kruzhkov continued to study by correspondence during the war,
as he asked Postoyeva, who was then under investigation, to solve problems
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in complex analysis [13]. Investigator Kruzhkov fabricated 12 criminal cases
against 65 people [4]. Kruzhkov’s son became a well-known mathematician.

“... convicted scientists should not be shot, and their execution should
be commuted to imprisonment in a [labor] camp, with them being utilized
according to their specializations”

It is interesting to learn the views of the investigators convicted of falsification
in this case. Investigator Altshuller saw the scientists and teachers primarily
as former Socialist Revolutionaries, cadets, representatives of another culture,
another class.

I am a soldier of the revolution who has devoted his entire conscious
life to carrying out the Party’s orders in the sharp9 section of the class
struggle and, as such, has committed mistakes arising from the flawed
system of work of the state security organs of the Yezhov and Beria
period. (From the appeal of the former investigator Altshuller, 1970,
quoted in [1].)

Kruzhkov also considered those under investigation to be enemies of the
people and saw nothing reprehensible in torture:

The defendant Kruzhkov partially admitted his guilt at the hearing,
i.e., the use of unlawful methods of investigation against certain
individuals, such as the use of standings, nighttime interrogations,
swearing to break the will of the interrogated, and, in some cases,
beatings. He also admitted the fact that on a number of occasions
he had failed to put negative [i.e., denying] testimony in the interro-
gation records and obtained testimony from the person sentenced to
capital punishment while stating that he had used illegal methods of
investigation and obtained confessions, believed them at the time and
thought that he was fighting the enemies of the people. (Quoted from
[6].)

Ryabov obeyed instructions from his superiors and preferred not to think
about what was happening.

Both Zanin and Podchasov, as well as Kruzhkov and, in some cases,
Artemov, came to me during the interrogations of the arrestees. The
very fact of their entering the interrogation rooms, their demanding
attitude towards the arrested, their “logical” and “convincing” — as
it seemed to me at the time — use of circumstances taken from the
testimonies of other arrested persons, and, on the part of Kruzhkov,
a harsher treatment played a decisive role in the confessions of the
arrested, whom I had been ordered to interrogate [...].
In accordance with the orders of my former superiors, I also carried out
other investigative actions without being aware of the actual merits of

9 I.e., “intensive” in the political lingo of the time.
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the cases at the time. (Testimony of Lieutenant Colonel Ryabov, 1957,
quoted in [1].)

Artemov believed the arrested to be guilty even before the investigation
had begun simply because of their disloyalty to the Soviet authorities:

[...] because the accused indeed did not shoot, did not kill, but were
engaged in anti-Soviet conversations about the need, also through
anti-Soviet conversations, to identify like-minded people and connect
with them, about the need to “save” the civilian population of the
city and for this purpose to seek the surrender of Leningrad to the
Germans, about the need to offer their services to the Nazi command
in an organized manner to establish a “new order” in Leningrad [...]
(Testimony of Colonel Artemov, 1957, cited in [1].)

Shevelev failed to notice the tortures by Kruzhkov but was principled in
his unwillingness to falsify the case and dictate to those under investigation
what they should themselves confess to. For this, he was accused of stalling
the investigation, being dismissed from the agencies, expelled from the CPSU,
and sent to the army (from the conclusion of the Special Inspectorate, the
testimony of former investigator Shevelev, quoted from [1]).

After the persons under investigation tell their interrogator all about
their counter-revolutionary activities, they enter a period of complete
indifference when they may sign whatever the interrogator tells them to
sign, without any objection. Both Podchasov and Altshuller saw this,
and when it became clear to them that I could not be persuaded to
create “a phony,” naturally it became necessary to remove me from the
case as someone standing in the way of their glory [...] Thus, after a day
or two, almost the entire apparatus of the Leningrad Directorate was
made aware that the Counterintelligence Department’s investigation
team was trying to puff up a big case against the scientists, and
that I, for standing in the way, obstructing them, would obviously be
arrested and imprisoned, as had been done with many others before
that. (Testimony of former investigator Shevelev, quoted from [1].)

Podchasov, being a mid-ranking boss, “did not notice” the falsifications by
his subordinates, but when he refused to arrest more scientists on the testimony
of those already sentenced to death, they ... simply stopped calling him to
meetings (testimony of Colonel Podchasov, quoted from [1]).

Zanin was following instructions from above “not to delay the development.”
He might not have given direct orders to falsify materials, seeing that Alt-
shuller, Kruzhkov, and Artemov were doing fine on their own. It was enough
for Zanin to turn a blind eye to something every now and then.

The leadership of the MGB and the Leningrad Directorate demanded
to ensure internal security in the city. There were instructions by
the MGB and f[ormer] head of the UKGB Kubatkin not to drag



490 The story of mathematicians repressed by the NKVD...

out developments and to close them quickly. With the same goal in
mind, instructions were given to review all archival materials in the
departments and, if there were indications of c-r[counter-revolutionary]
activity, to realize them as well by investigative means [...]. The
investigations that started were over in a short period of time. There
was a large number of people arrested. In such an environment and
under such conditions, big mistakes and shortcomings could and did
occur in the agency’s investigative work. Materials were not always
fully checked and documented. At the time, the primary evidence
in an investigation was the confession of the arrested, and this was
the main and big mistake stemming from the wrong policy of the
ministry. In addition, the situation in Leningrad did not quite allow
for prolonged development and investigation. The whole process of the
investigation into the cases took place under the supervision and with
the participation of representatives of the prosecutor’s office, who, like
us, were in the office day and night with no breaks [...] The arrested
were indeed a-s [anti-Soviet] minded. This they do not seem to deny
even now. (Testimony of Colonel Zanin, 1958, quoted in [1].)

Ogoltsov simply did not have the time (or inclination) to delve into whether
these scientists should have been arrested, let alone tried in the first place, or
what his subordinates were doing:

[The case] required a thorough investigation, I would have needed to
spend time comparing the facts and checking individual discrepancies
and data, but the situation in the city besieged by the enemy did not
allow this to be done. Based on these considerations, on my initiative,
the UNKVD made a proposition: convicted scientists should not be
shot, and their execution should be commuted to imprisonment in a
[labor] camp, with them being utilized according to their specializa-
tions [...].
My fault is that I did not sufficiently supervise either the progress of the
undercover development or the investigation. In particular, I should
have met personally with the agents who had reported information
about the existence of a group of scientists carrying out anti-Soviet
work and made sure that this information was correct. But I did not
and could not do this because in addition to my primary duties as the
deputy chief of the UNKVD I was appointed head of the operational
staff to fight against enemy paratroopers in the Leningrad region. I
formed 136 fighter battalions, and trained, and prepared these battal-
ions. Besides this tremendous and important work in the conditions
of war, I was charged with commanding subversive activities behind
enemy lines, forming and sending two Chekist partisan detachments
to the field of operations, selecting Chekists for the people’s militia,
forming a division out of the UNKVD and police members, and, finally,
overseeing the front line defenses on the city outskirts, which was
assigned to the 5th and 20th divisions of the NKVD. (Testimony of
Lieutenant General Ogoltsov, quoted in [1].)
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In 1948, as Deputy Minister of State Security, Ogoltsov directed the
murder of Solomon Mikhoels, head of the Jewish Anti-Fascist Committee. In
1959, Ogoltsov was stripped of his military rank of lieutenant general and
government decorations “as having discredited himself during his work in the
agencies.” Colonels Zanin, Artemov, Podchasov, Kozhemyakin, and Altshuller
had already been dismissed in 1957, and their discharge was re-issued as “due
to facts discrediting the rank of officer.” Lieutenant-Colonel Ryabov was
reprimanded. Kruzhkov, as we have already noted, was sentenced to 20 years
of imprisonment but was released after seven years in a camp.

The scientists’ rehabilitation case appears to have started as follows. Pro-
fessor Strakhovich sent a complaint to Prosecutor General Rudenko in 1954
that his testimony had been obtained by investigators Kruzhkov and Artemov
through long night interrogations and threats against relatives. An intra-
departmental struggle resulted in the complaint reaching Khrushchev who
decreed that “All those responsible are to be found and severely punished”
(From the appeal of former investigator Altshuller, quoted in [1]).

Such was the zeitgeist of the time. Of course, teachers and students knew
that some had died in the war, some had gone missing, and some had been
taken by the security agencies for interrogation: the community was not that
numerous. Many Leningrad mathematicians died on the frontlines and in the
rear during the war. Detailed biographies of fifty of them are given in the
two-volume book [9]. One can only guess what role the repressions, passing so
close to everyone, played in the worldview of Soviet mathematicians.

Nikita Kalinin
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