Устойчивость ортотропных оболочек под воздействием динамической нагрузки

И.В. Каменев, СПбГКУ «ЦРТПиПЧС»

v

$\left(k_{x}F_{1}(\Phi)+k_{y}F_{2}(\Phi)\right)-\frac{\partial}{\partial r}\left(F_{1}(\Phi)\theta_{1}+F_{3}(\Phi)\theta_{2}\right) -\frac{\partial}{\partial y} \left(F_2(\Phi) \theta_2 + F_3(\Phi) \theta_1 \right) + \frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + q = h \rho \frac{\partial^2 W}{\partial t^2};$ $\frac{\partial}{\partial x} \left| -\frac{1}{2} \frac{\partial}{\partial y} \left(\frac{1}{G_{12}} F_3(\Phi) \right) + \frac{\partial}{\partial x} \left(\frac{1}{E_2 h} F_2(\Phi) - \frac{\mu_{12}}{E_1 h} F_1(\Phi) \right) \right| +$ $- \left| + \frac{\partial}{\partial y} \right| - \frac{1}{2} \frac{\partial}{\partial x} \left(\frac{1}{G_{12}} F_3(\Phi) \right) + \frac{\partial}{\partial y} \left(\frac{1}{E_1 h} F_1(\Phi) - \frac{\mu_{21}}{E_2 h} F_2(\Phi) \right) \right| =$ (1) $= - \left(\widetilde{\chi}_{12}^2 - \widetilde{\chi}_1 \widetilde{\chi}_2 + k_x \widetilde{\chi}_2 + k_y \widetilde{\chi}_1 \right)$ $\frac{\partial}{\partial x} \left(\frac{E_1 h^3}{12(1-\mu_{12}\mu_{21})} (\chi_1 + \mu_{21}\chi_2) \right) + \frac{\partial}{\partial y} \left(\frac{h^3}{12} G_{12}\chi_{12} \right) - Q_x = 0;$ $\frac{\partial}{\partial y} \left(\frac{E_2 h^3}{12(1-\mu_{12}\mu_{21})} (\chi_2 + \mu_{12}\chi_1) \right) + \frac{\partial}{\partial x} \left(\frac{h^3}{12} G_{12}\chi_{12} \right) - Q_y = 0;$

Уравнения в смешанной форме

где:

$$\theta_1 = -\frac{\partial W}{\partial x}, \ \theta_2 = -\frac{\partial W}{\partial y}; \quad \chi_1 = \frac{\partial \Psi_x}{\partial x}; \quad \chi_2 = \frac{\partial \Psi_y}{\partial y}; \quad \chi_{12} = \frac{1}{2} \left(\frac{\partial \Psi_x}{\partial y} + \frac{\partial \Psi_y}{\partial x} \right).$$

Расчетные параметры

Номер	мер анта стрии Параметр геометрии 1	Вариант геометрии			
варианта геометрии		1	2	3	
1	<i>h</i> , м	0.09	0.09	0.09	
2	<i>a</i> = <i>b</i> , м	5.4	10.8	18	
3	$R_1 = R_2$, м	20.25	40.05	45.27	

Физический	Название материала						
параметр	M60J/Epoxy	AS/3501/Epoxy	E-Glass/Epoxy	T10 UPE22-27			
<i>Е</i> ₁ , МПа	330 000	138 000	60 700	29 400			
<i>Е</i> ₂ , МПа	59 000	8 960	24 800	17 800			
$G_{12} = G_{13} = G_{23},$ M Π a	3 900	7 100	12 000	3 010			
μ_{12}	0.320	0.300	0.230	0.123			
μ ₂₁	0.057	0.019	0.094	0.074			
ρ, кг/м ³	1 500	1 540	1 800	1 800			

Рисунок 4. Графики «Нагрузка – наибольший прогиб» для E-Glass/Ероху варианта 1

Рисунок 9. Графики «Нагрузка – наибольший прогиб» для T10 UPE22-27/Ероху варианта 2

7/10

Значения критических нагрузок

Материал	Вариант геометрии	q st , M∏a	<i>q</i> ¹, M∏a	<i>q</i> ² , M∏a	<i>t</i> ¹ , c	<i>t</i> ² , c
M60J/Epoxy	1	0.405	0.425	0.459	0.174	0.094
AS/3501/Epoxy	1	0.205	0.270	0.320	0.111	0.066
E-Glass/Epoxy	1	0.265	0.373	0.388	0.153	0.079
T10 UPE22-27	1	0.105	0.206	0.223	0.084	0.046
M60J/Epoxy	2	0.081	0.167	0.257	0.068	0.053
AS/3501/Epoxy	2	0.059	0.134	0.218	0.055	0.045
E-Glass/Epoxy	2	0.120	0.260	0.339	0.107	0.069
T10 UPE22-27	2	0.036	0.203	0.336	0.083	0.069
M60J/Epoxy	3	0.098	0.192	0.295	0.079	0.060
AS/3501/Epoxy	3	0.067	0.193	0.311	0.079	0.064
E-Glass/Epoxy	3	0.070	0.228	0.414	0.093	0.085
T10 UPE22-27	3	0.030	0.184	0.315	0.075	0.065

8/10

Заключение

- Разработана модель деформирования пологих оболочечных конструкций из ортотропных материалов, находящихся под воздействием динамической нагрузки с учетом геометрической нелинейности и поперечных сдвигов.
- 2. Разработан алгоритм её исследования на основе методов Власова-Канторовича и Рунге-Кутта.
- 3. Проведено исследования устойчивости 12 конструкций 3 геометрий, выполненных из 4 материалов. Оптимальным материалом на основе сравнения значений критических нагрузок потери устойчивости и соответствующему такой нагрузке времени выбрано стекловолокно E-Glass/Epoxy.
- 4. Показан эффект запаздывания, свойственный конструкциям, находящимся под воздействием динамической нагрузки.
- 5. Полученные результаты будут использованы для исследования подобных конструкций, ослабленных вырезами и подкрепленными ребрами жесткости.

Список литературы

- 1. Кривошапко С.Н. 2013. О возможностях оболочечных сооружений в современной архитектуре и строительстве. Строительная механика инженерных конструкций и сооружений (1): 51-56.
- 2. Karpov V.V. & Semenov A.A. 2017. Mixed-form equations for stiffened orthotropic shells of arbitrary canonical shape with static load. *Journal of Mechanics* 34: 469-474.
- 3. Каменев И.В. и Семенов А.А. 2018. Устойчивость ортотропных пологих оболочек двоякой кривизны при шарнирно-подвижном закреплении контура. Вестник Пермского национального исследовательского политехнического университета. Механика 2: 32-43.
- 4. Duc N.D. & Tung H.V. 2010. Nonlinear response of pressure-loaded functionally graded cylindrical panels with temperature effects. *Composite Structures* 92: 1664-1672.

Спасибо за внимание!